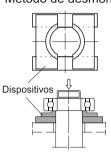
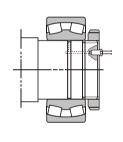




# 12. DESMONTAJE DE LOS RODAMIENTOS

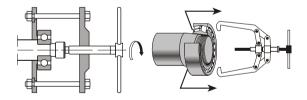
El método que se aplique para el desmontaje de los rodamientos dependerá del motivo por el cual se retiran estos del servicio.


Para los rodamientos que van a ser desechados, cualquier simple método, incluso el corte oxiacetilénico puede ser utilizado, aunque se debe tomar especial cuidado con este método para no dañar el eje o el alojamiento. En los rodamientos que van a ser reutilizados, debemos tener el mismo cuidado durante el montaje como en

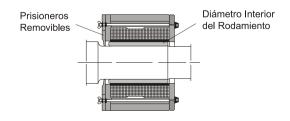

el desmontaje, para no dañar los rodamientos y otras partes (accesorios de montaje, ejes, etc.).

Así mismo, los rodamientos con ajuste de interferencia pueden dañarse fácilmente durante el desmontaje, por lo cual deben ser incorporadas medidas en el diseño de los equipos para la prevención de daños durante el desmontaje. También es recomendable diseñar y construir dispositivos para el desmontaje. Para facilitar el análisis de averías, se recomienda anotar el estado del rodamiento antes de su desmontaje, teniendo en cuenta su posición y orientación.

### 12.1 Cuadro 18: DESMONTAJE DE RODAMIENTOS CON AGUJERO CILINDRICO.


Método de desmontaje del anillo interior






a) Desmontaje usando prensa mécanica.

b) Desmontaje mediante uso de aceite



c) y d) Desmontaje usando extractor



e)- Desmontaje utilizando un calentador por inducción

### Descripción

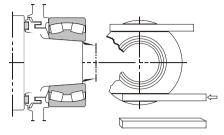
\*Los rodamientos no-separables deben ser tratados cuidadosamente durante el desmontaje a fin de minimizar los esfuerzos externos que afectan a los elementos rodantes.

\*La vía más fácil para remover este tipo de rodamientos es aplicando presión, de la manera como se muestra en la fig. a).

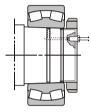
Es recomendable que el dispositivo (botador tubular) usado para el desmontaje, aplique la fuerza solamente en el aro interior del rodamiento.

\*Los rodamientos grandes pueden ser removidos aplicando aceite a presión entre las superficies en contacto, como se muestra en la fig. b).

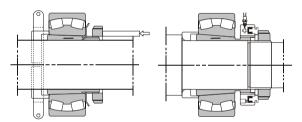
\*Las figs. c) y d) muestran el método de desmontaje utilizando extractores. En ambos casos, las mandíbulas del extractor se deben apoyar firmemente en las caras del anillo interior.


\*La fig.e) muestra un ejemplo de desmontaje mediante el uso de un calentador por inducción. Este método puede ser adoptado tanto para el montaje como para el desmontaje de los anillos interiores de los rodamientos de rodillos cilíndricos, de las series NU v NJ.

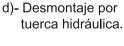


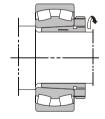



### 12.2 Cuadro 19: DESMONTAJE DE RODAMIENTOS CON AGUJERO CÓNICO.

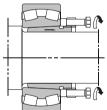

Métodos de desmontaje del anillo interior



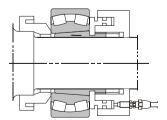

a)- Desmontaje mediante cuñas.




b)- Desmontaje mediante presión de aceite.




c)- Desmontaje con abrazadera.






e)-Desmontaje usando contratuerca



f)-Desmontaje con tornillos.



g)-Desmontaje a través de tuerca hidráulica Descripción.

\*La fig. a) muestra el sistema de desmontaje situando dos ranuras en la cara posterior del anillo del laberinto, para guiar las cuñas como se indica, pudiéndose entonces desmontar los rodamientos con facilidad aplicando las cuñas a las ranuras.

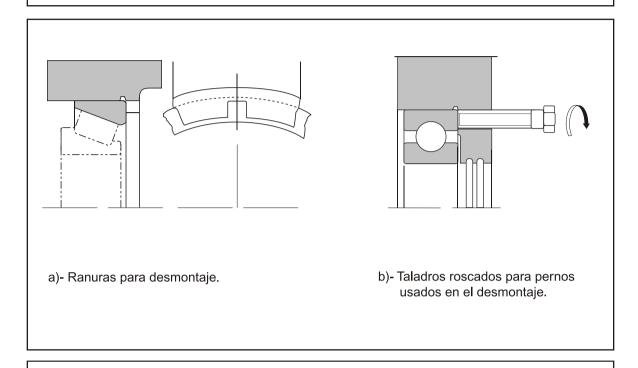
La fig. b) muestra el desmontaje aplicando alta presión de aceite entre las superficies. En ambos casos es necesario un medio de seguridad (ejemplo: contratuerca) para evitar la caída de los rodamientos una vez que salgan del eje (protección del operario).

\*Para los rodamientos con adaptador de manguito los siguientes dos métodos son recomendables.

En la fig. c) se fija sobre el eje la misma abrazadera que se uso durante el montaje, se debe aflojar un poco la contratuerca y expulsar el manguito, golpéandolo con el martillo mediante un botador. Este método es usado para rodamientos de tamaño pequeño.

La fig. d) muestra el método utilizando tuerca hidráulica.

\*Para la extracción de pequeños rodamientos con manguitos de desmontaje, se aprieta la contratuerca tal como se indica en la fig. e) para sacar el manguito y dejar libre el rodamiento. Si el rodamiento es grande, la tuerca deberá llevar varios agujeros roscados, en los cuales entran los tornillos de manera como se muestra en la fig. f). De esta forma los rodamientos grandes pueden ser removidos casi tan fácilmente como los rodamientos de tamaño pequeño.


\*La fig. g) muestra el método usando tuerca hidráulica.





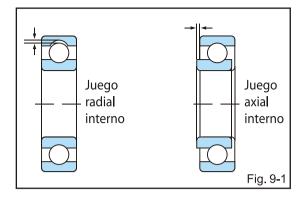
### 12.3 Cuadro 20: DESMONTAJE DE ANILLOS EXTERIORES.

### Métodos de desmontaje del anillo exterior



### Descripción.

\*Cuando en una aplicación se precise un ajuste de interferencia (apriete) en el anillo exterior o si el rodamiento queda inaccesible para la herramienta de desmontaje, entonces es útil disponer ranuras o taladros roscados alrededor del resalte del alojamiento, como se indica en la fig. a) y b). En el caso de que resulte difícil el montaje o el desmontaje del rodamiento, se deberá considerar cambiar el tipo de rodamiento, o el diseño del eje o del alojamiento.






### 13. JUEGO INTERNO DE LOS RODAMIENTOS

### 13.1 Definición

El juego interno del rodamiento se define como la distancia en que se puede mover ya sea el aro interno o aro externo cuando está inmovilizado el otro aro. Si el movimiento es en la dirección radial (ambos sentidos) entonces se llama juego radial interno y si es en la dirección axial (ambos sentidos) entonces se trata del juego axial interno.



Si se conoce el valor del juego radial interno de un rodamiento, se puede calcular también su juego axial interno a través de fórmulas mostradas abajo.

Rodamientos rígidos de bolas 
$$\Delta a = \sqrt{\Delta r (4m_o - \Delta r)}$$

Rodamientos de doble hilera de bolas con contacto angular  $\Delta a = 2\sqrt{m_o 2 - (m_o \cos \alpha - \Delta r/2)^2} - 2 m_o \sin \alpha$ 

Rodamientos de bolas con contacto angular apareados  $\Delta a = 2 m_0 \text{ sen } \alpha -2 \sqrt{m_0 2 - (m_0 \cos \alpha + \Delta r/2)^2}$ 

Rodamientos de rodillos cónicos de doble/cuatro hileras y apareados  $\Delta a = \Delta r \cot \alpha$  / (1.5/e  $\Delta r$ )

Donde...  $\Delta a$  =juego axial interno (mm)  $\Delta r$ = juego radial interno (mm) e = valor límite de Fa/Fr (mostrado en tablas de especificaciones)  $\alpha$  = ángulo de contacto  $m_0$  =  $r_e$  +  $r_i$  -Da Siendo  $r_e$ = radio de curvatura del camino de rodadura externo(mm),  $r_i$ = radio de curvatura del camino de rodadura interno(mm), Da=diám.bolas(mm)

La relación entre el juego radial y axial en los rodamientos rígidos de bolas de doble hilera de contacto angular o apareados puede verse gráficamente en las figuras 9-2 y 9-3

Fig. 9-2 Relación entre el Juego radial y axial interno en rodamientos rígidos de bolas

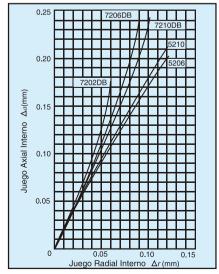




Fig. 9-3 Relación entre el Juego radial y axial interno en rodamientos de bolas de contacto angular de doble hilera o apareados







Cuadro 21: Juego radial interno de los rodamientos de bolas (agujero cilíndrico).

Unidad: µm

|         | o Interior |      |     |      | Juego r | adial int | erno |      |      |      |      |
|---------|------------|------|-----|------|---------|-----------|------|------|------|------|------|
| Nominal | d (mm)     | С    | 2   | С    | N       | (         | 3    | C    | 4    | С    | 5    |
| Más de  | Hasta      | Mín. | Máx | Mín. | Máx.    | Mín.      | Máx. | Mín. | Máx. | Mín. | Máx. |
| 2.5     | 6          | 0    | 7   | 2    | 13      | 8         | 23   | 14   | 29   | 20   | 37   |
| 6       | 10         | 0    | 7   | 2    | 13      | 8         | 23   | 14   | 29   | 20   | 37   |
| 10      | 18         | 0    | 9   | 3    | 18      | 11        | 25   | 18   | 33   | 25   | 45   |
| 18      | 24         | 0    | 10  | 5    | 20      | 13        | 28   | 20   | 36   | 28   | 48   |
| 24      | 30         | 1    | 11  | 5    | 20      | 13        | 28   | 23   | 41   | 30   | 53   |
| 30      | 40         | 1    | 11  | 6    | 20      | 15        | 33   | 28   | 46   | 40   | 64   |
| 40      | 50         | 1    | 11  | 6    | 23      | 18        | 36   | 30   | 51   | 45   | 73   |
| 50      | 65         | 1    | 15  | 8    | 28      | 23        | 43   | 38   | 61   | 55   | 90   |
| 65      | 80         | 1    | 15  | 10   | 30      | 25        | 51   | 46   | 71   | 65   | 105  |
| 80      | 100        | 1    | 18  | 12   | 36      | 30        | 58   | 53   | 84   | 75   | 120  |
| 100     | 120        | 2    | 20  | 15   | 41      | 36        | 66   | 61   | 97   | 90   | 140  |
| 120     | 140        | 2    | 23  | 18   | 48      | 41        | 81   | 71   | 114  | 105  | 160  |
| 140     | 160        | 2    | 23  | 18   | 53      | 46        | 91   | 81   | 130  | 120  | 180  |
| 160     | 180        | 2    | 25  | 20   | 61      | 53        | 102  | 91   | 147  | 135  | 200  |
| 180     | 200        | 2    | 30  | 25   | 71      | 63        | 117  | 107  | 163  | 150  | 230  |
| 200     | 225        | 2    | 35  | 25   | 85      | 75        | 140  | 125  | 195  | 175  | 265  |
| 225     | 250        | 2    | 40  | 30   | 95      | 85        | 160  | 145  | 225  | 205  | 300  |
| 250     | 280        | 2    | 45  | 35   | 105     | 90        | 170  | 155  | 245  | 225  | 340  |
| 280     | 315        | 2    | 55  | 40   | 115     | 100       | 190  | 175  | 270  | 245  | 370  |
| 315     | 355        | 3    | 60  | 45   | 125     | 110       | 210  | 195  | 300  | 275  | 410  |
| 355     | 400        | 3    | 70  | 55   | 145     | 130       | 240  | 225  | 340  | 315  | 460  |

Nota 1) Para el cálculo del juego interno, se deberán añadir los factores de corrección que se especifican a continuación, debido al juego radial que se origina en el momento de aplicar la carga al rodamiento.

Para los factores de corrección de juego interno de la columna C2, el valor menor se le aplicará al juego mínimo, el valor mayor para el juego interno máximo.

<sup>2)</sup> Los valores escritos en itálica están basados en las normas Koyo.

| Diámetro<br>Nominal, | Interior<br>d (mm) | Medida de la carga | C     | antidad de | a correcció | n del juego, | μm  |
|----------------------|--------------------|--------------------|-------|------------|-------------|--------------|-----|
| Más de               | Hasta              | N                  | C 2   | C N        | C 3         | C 4          | C 5 |
| 2.5                  | 18                 | 24.5               | 3 - 4 | 4          | 4           | 4            | 4   |
| 18                   | 50                 | 49                 | 4 - 5 | 5          | 6           | 6            | 6   |
| 50                   | 280                | 147                | 6 - 8 | 8          | 9           | 9            | 9   |

Cuadro 21.1: Juego radial interno de los rodamientos de bolas miniatura y extraminiatura

Unidad: µm

| Código del juego | M    | 11  | M 2  |      | N    | <i>I</i> 3 | M    | l 4  | M 5  |      | M 6  |      |
|------------------|------|-----|------|------|------|------------|------|------|------|------|------|------|
| interno          | Mín. | Máx | Mín. | Máx. | Mín. | Máx.       | Mín. | Máx. | Mín. | Máx. | Mín. | Máx. |
| Juego            | 0    | 5   | 3    | 8    | 5    | 10         | 8    | 13   | 13   | 20   | 20   | 28   |

[Nota] Para la corrección en la medición del juego deberán añadirse las siguientes cantidades.

| Medida de la carga |     | Cantidad | de la corr | ección de | <b>l juego</b> , μm | ı   |
|--------------------|-----|----------|------------|-----------|---------------------|-----|
| N                  | M 1 | M 2      | М 3        | M 4       | M 5                 | M 6 |
| 2.3                | 1   | 1        | 1          | 1         | 1                   | 1   |

Para rodamientos de bolas extrapequeños: 9 mm o más en diámetro exterior y menos de 10 mm en diámetro interior.

Para rodamientos miniatura : menos de 9 mm de diámetro exterior.





### Cuadro 22: Juego radial interno de los rodamientos de bolas autoalineables.

### 1) Agujero Cilíndrico

Unidad: µm

2) Agujero Cónico

Unidad: µm

| Dián<br>Inter | netro<br>ior |      |      |      | Jueg | o Rad | ial Int | erno |      |      |      |
|---------------|--------------|------|------|------|------|-------|---------|------|------|------|------|
| Nom<br>d (ı   | ninal<br>mm) | С    | 2    | Está | ndar | O     | :3      | С    | 4    | С    | 5    |
| Más<br>de     | Hasta        | Mín. | Máx. | Mín. | Máx. | Mín.  | Máx.    | Mín. | Máx. | Mín. | Máx. |
| 2.5           | 6            | 1    | 8    | 5    | 15   | 10    | 20      | 15   | 25   | 21   | 33   |
| 6             | 10           | 2    | 9    | 6    | 17   | 12    | 25      | 19   | 33   | 27   | 42   |
| 10            | 14           | 2    | 10   | 6    | 19   | 13    | 26      | 21   | 35   | 30   | 48   |
| 14            | 18           | 3    | 12   | 8    | 21   | 15    | 28      | 23   | 37   | 32   | 50   |
| 18            | 24           | 4    | 14   | 10   | 23   | 17    | 30      | 25   | 39   | 34   | 52   |
| 24            | 30           | 5    | 16   | 11   | 24   | 19    | 35      | 29   | 46   | 40   | 58   |
| 30            | 40           | 6    | 18   | 13   | 29   | 23    | 40      | 34   | 53   | 46   | 66   |
| 40            | 50           | 6    | 19   | 14   | 31   | 25    | 44      | 37   | 57   | 50   | 71   |
| 50            | 65           | 7    | 21   | 16   | 36   | 30    | 50      | 45   | 69   | 62   | 88   |
| 65            | 80           | 8    | 24   | 18   | 40   | 35    | 60      | 54   | 83   | 76   | 108  |
| 80            | 100          | 9    | 27   | 22   | 48   | 42    | 70      | 64   | 96   | 89   | 124  |
| 100           | 120          | 10   | 31   | 25   | 56   | 50    | 83      | 75   | 114  | 105  | 145  |
| 120           | 140          | 10   | 38   | 30   | 68   | 60    | 100     | 90   | 135  | 125  | 175  |
| 140           | 160          | 15   | 44   | 35   | 80   | 70    | 120     | 110  | 161  | 150  | 210  |

| Diár<br>Inter | netro<br>rior           |      |      |      | Jueg | o Rad | lial Inte | erno |      |      |      |
|---------------|-------------------------|------|------|------|------|-------|-----------|------|------|------|------|
| Nom<br>d (i   | ninal<br><sub>mm)</sub> | С    | 2    | Está | ndar | С     | :3        | O    | 4    | С    | 5    |
| Más<br>de     | Hasta                   | Mín. | Máx. | Mín. | Máx. | Mín.  | Máx.      | Mín. | Máx. | Mín. | Máx. |
| 18            | 24                      | 7    | 17   | 13   | 26   | 20    | 33        | 28   | 42   | 37   | 55   |
| 24            | 30                      |      | 20   | 15   | 28   | 23    | 39        | 33   | 50   | 44   | 62   |
| 30            | 40                      | 12   | 24   | 19   | 35   | 29    | 46        | 40   | 59   | 52   | 72   |
| 40            | 50                      | 14   | 27   | 22   | 39   | 33    | 52        | 45   | 65   | 58   | 79   |
| 50            | 65                      | 18   | 32   | 27   | 47   | 41    | 61        | 56   | 80   | 73   | 99   |
| 65            | 80                      | 23   | 39   | 35   | 57   | 50    | 75        | 69   | 98   | 91   | 123  |
| 80            | 100                     | 29   | 47   | 42   | 68   | 62    | 90        | 84   | 116  | 109  | 144  |
| 100           | 120                     | 35   | 56   | 50   | 81   | 75    | 108       | 100  | 139  | 130  | 170  |
| 120           | 140                     | 40   | 68   | 60   | 98   | 90    | 130       | 120  | 165  | 155  | 205  |
| 140           | 160                     | 45   | 74   | 65   | 110  | 100   | 150       | 140  | 191  | 180  | 240  |

### Cuadro 23: Juego radial interno de los rodamientos para motores eléctricos.

### 1) Rodamientos Rígidos de Bolas

Unidad: µm

|                              | o Interior        | Juego Rad      | lial Interno   |
|------------------------------|-------------------|----------------|----------------|
| Nomina                       | <b>l</b> , d (mm) | CI             | М              |
| Más de                       | Hasta             | Mín.           | Máx.           |
| 10 <sup>1)</sup><br>18<br>30 | 18<br>30<br>50    | 4<br>5<br>9    | 11<br>12<br>17 |
| 50<br>80<br>120              | 80<br>120<br>160  | 12<br>18<br>24 | 22<br>30<br>38 |

Nota: 1) 10mm está incluído.

2) Rodamientos de Rodillos Cilíndricos

Unidad: µm

| Diámetro | Interior |               | Juego Rad    | dial Interno | )    |
|----------|----------|---------------|--------------|--------------|------|
| Nominal, | d (mm)   | Intercan<br>C | nbiable<br>T | No Interca   |      |
| Más de   | Hasta    | Mín.          | Máx.         | Mín.         | Máx. |
| 24       | 40       | 15            | 35           | 15           | 30   |
| 40       | 50       | 20            | 40           | 20           | 35   |
| 50       | 65       | 25            | 45           | 25           | 40   |
| 65       | 80       | 30            | 50           | 30           | 45   |
| 80       | 100      | 35            | 60           | 35           | 55   |
| 100      | 120      | 35            | 65           | 35           | 60   |
| 120      | 140      | 40            | 70           | 40           | 65   |
| 140      | 160      | 50            | 85           | 50           | 80   |
| 160      | 180      | 60            | 95           | 60           | 90   |
| 180      | 200      | 65            | 105          | 65           | 100  |

Nota: Intercambiable solamente con productos del mismo fabricante.





# Cuadro 24: Juego radial interno de los rodamientos de bolas de doble hilera de contacto angular.

Unidad: µm

| Diámetro |        |          |    | Juego Rad | ial Interno |      |     |
|----------|--------|----------|----|-----------|-------------|------|-----|
| Nominal, | d (mm) | CE       | 2  | Está      | ndar        | С    | D 3 |
| Más de   | Hasta  | Mín. Máx |    | Mín.      | Máx         | Mín. | Máx |
| 2.5      | 10     | 0        | 7  | 2         | 10          | 8    | 18  |
| 10       | 18     | 0        | 7  | 2         | 11          | 9    | 19  |
| 18       | 24     | 0        | 8  | 2         | 11          | 10   | 21  |
| 24       | 30     | 0        | 8  | 2         | 13          | 10   | 23  |
| 30       | 40     | 0        | 9  | 3         | 14          | 11   | 24  |
| 40       | 50     | 0        | 10 | 4         | 16          | 13   | 27  |
| 50       | 65     | 0        | 11 | 6         | 20          | 15   | 30  |
| 65       | 80     | 0        | 12 | 7         | 22          | 18   | 33  |
| 80       | 100    | 0        | 12 | 8         | 24          | 22   | 38  |
| 100      | 120    | 0        | 13 | 9         | 25          | 24   | 42  |
| 120      | 140    | 0        | 15 | 10        | 26          | 25   | 44  |
| 140      | 160    | 0        | 16 | 11        | 28          | 26   | 46  |
| 160      | 180    | 0        | 17 | 12        | 30          | 27   | 47  |
| 180      | 200    | 0        | 18 | 14        | 32          | 28   | 48  |

Cuadro 25: Juego radial interno de los rodamientos de bolas de contacto angular apareados (medida del juego).

Unidad: µm

| Diámetro I | nterior | Angul | o de Co | ontacto,      | 151/4 |      | А    | ngulo        | de C | ontact | to 30½ | 4    |      |       | Д    | ngulo         | de C | ontac | to 40½ | 4    |      |
|------------|---------|-------|---------|---------------|-------|------|------|--------------|------|--------|--------|------|------|-------|------|---------------|------|-------|--------|------|------|
| Nominal,   | d (mm)  | Jueg  | o C2    | Jueg<br>estái |       | Jueg | o C2 | Jueg<br>está |      | Jueg   | o C3   | Jueg | o C4 | Juego | o C2 | Jueg<br>estái |      | Juego | o C3   | Jueg | o C4 |
| Más de     | Hasta   | Mín.  | Máx.    | Mín.          | Máx.  | Mín. | Máx. | Mín.         | Máx. | Mín.   | Máx.   | Mín. | Máx. | Mín.  | Máx. | Mín.          | Máx. | Mín.  | Máx.   | Mín. | Máx. |
| -          | 10      | 13    | 33      | 33            | 53    | 3    | 14   | 10           | 30   | 30     | 50     | 50   | 70   | 2     | 10   | 6             | 18   | 16    | 30     | 26   | 40   |
| 10         | 18      | 15    | 35      | 35            | 55    | 3    | 16   | 10           | 30   | 30     | 50     | 50   | 70   | 2     | 12   | 7             | 21   | 18    | 32     | 28   | 44   |
| 18         | 24      | 20    | 40      | 45            | 65    | 3    | 20   | 20           | 40   | 40     | 60     | 60   | 80   | 2     | 12   | 12            | 26   | 20    | 40     | 30   | 50   |
| 24         | 30      | 20    | 40      | 45            | 65    | 3    | 20   | 20           | 40   | 40     | 60     | 60   | 80   | 2     | 14   | 12            | 26   | 20    | 40     | 40   | 60   |
| 30         | 40      | 20    | 40      | 45            | 65    | 3    | 20   | 25           | 45   | 45     | 65     | 70   | 90   | 2     | 14   | 12            | 26   | 25    | 45     | 45   | 65   |
| 40         | 50      | 20    | 40      | 50            | 70    | 3    | 20   | 30           | 50   | 50     | 70     | 75   | 95   | 2     | 14   | 12            | 30   | 30    | 50     | 50   | 70   |
| 50         | 65      | 30    | 55      | 65            | 90    | 9    | 27   | 35           | 60   | 60     | 85     | 90   | 115  | 5     | 17   | 17            | 35   | 35    | 60     | 60   | 85   |
| 65         | 80      | 30    | 55      | 70            | 95    | 10   | 28   | 40           | 65   | 70     | 95     | 110  | 135  | 6     | 18   | 18            | 40   | 40    | 65     | 70   | 95   |
| 80         | 100     | 35    | 60      | 85            | 110   | 10   | 30   | 50           | 75   | 80     | 105    | 130  | 155  | 6     | 20   | 20            | 45   | 55    | 80     | 85   | 110  |
| 100        | 120     | 40    | 65      | 100           | 125   | 12   | 37   | 65           | 90   | 100    | 125    | 150  | 175  | 6     | 25   | 25            | 50   | 60    | 85     | 100  | 125  |
| 120        | 140     | 45    | 75      | 110           | 140   | 15   | 40   | 75           | 105  | 120    | 150    | 180  | 210  | 7     | 30   | 30            | 60   | 75    | 105    | 125  | 155  |
| 140        | 160     | 45    | 75      | 125           | 155   | 15   | 40   | 80           | 110  | 130    | 160    | 210  | 240  | 7     | 30   | 35            | 65   | 85    | 115    | 140  | 170  |
| 160        | 180     | 50    | 80      | 140           | 170   | 15   | 45   | 95           | 125  | 140    | 170    | 235  | 265  | 7     | 31   | 45            | 75   | 100   | 130    | 155  | 185  |
| 180        | 200     | 50    | 80      | 160           | 190   | 20   | 50   | 110          | 140  | 170    | 200    | 275  | 305  | 7     | 37   | 60            | 90   | 110   | 140    | 170  | 200  |

Nota: 1) El juego medido incluye el incremento del juego debido a la carga aplicada.

2) El juego C2 se aplica a los rodamientos de bolas de contacto angular del tipo "G".





### Cuadro 26: Juego radial interno de los rodamientos de rodillos esféricos.

(1) agujero cilíndrico

Unidad: µm

| Diámetro   | Interior    |            |            |            | Jueg       | o Radial Int | terno      |      |      |              |              |
|------------|-------------|------------|------------|------------|------------|--------------|------------|------|------|--------------|--------------|
| Nominal,   | d (mm)      | С          | 2          | Está       | ndar       | C            | 3          | С    | 4    | С            | 5            |
| Más de     | Hasta       | Mín.       | Máx        | Mín.       | Máx        | Mín.         | Máx        | Mín. | Máx  | Mín.         | Máx          |
| 14         | 18          | 10         | 20         | 20         | 35         | 35           | 45         | 45   | 60   | 60           | 75           |
| 18         | 24          | 10         | 20         | 20         | 35         | 35           | 45         | 45   | 60   | 60           | 75           |
| 24         | 30          | 15         | 25         | 25         | 40         | 40           | 55         | 55   | 75   | 75           | 95           |
| 30         | 40          | 15         | 30         | 30         | 45         | 45           | 60         | 60   | 80   | 80           | 100          |
| 40         | 50          | 20         | 35         | 35         | 55         | 55           | 75         | 75   | 100  | 100          | 125          |
| 50         | 65          | 20         | 40         | 40         | 65         | 65           | 90         | 90   | 120  | 120          | 150          |
| 65         | 80          | 30         | 50         | 50         | 80         | 80           | 110        | 110  | 145  | 145          | 180          |
| 80         | 100         | 35         | 60         | 60         | 100        | 100          | 135        | 135  | 180  | 180          | 225          |
| 100        | 120         | 40         | 75         | 75         | 120        | 120          | 160        | 160  | 210  | 210          | 260          |
| 120        | 140         | 50         | 95         | 95         | 145        | 145          | 190        | 190  | 240  | 240          | 300          |
| 140        | 160         | 60         | 110        | 110        | 170        | 170          | 220        | 220  | 280  | 280          | 350          |
| 160        | 180         | 65         | 120        | 120        | 180        | 180          | 240        | 240  | 310  | 310          | 390          |
| 180        | 200         | 70         | 130        | 130        | 200        | 200          | 260        | 260  | 340  | 340          | 430          |
| 200        | 225         | 80         | 140        | 140        | 220        | 220          | 290        | 290  | 380  | 380          | 470          |
| 225        | 250         | 90         | 150        | 150        | 240        | 240          | 320        | 320  | 420  | 420          | 520          |
| 250        | 280         | 100        | 170        | 170        | 260        | 260          | 350        | 350  | 460  | 460          | 570          |
| 280        | 315         | 110        | 190        | 190        | 280        | 280          | 370        | 370  | 500  | 500          | 630          |
| 315        | 355         | 120        | 200        | 200        | 310        | 310          | 410        | 410  | 550  | 550          | 690          |
| 355        | 400         | 130        | 220        | 220        | 340        | 340          | 450        | 450  | 600  | 600          | 750          |
| 400        | 450         | 140        | 240        | 240        | 370        | 370          | 500        | 500  | 660  | 660          | 820          |
| 450        | 500         | 140        | 260        | 260        | 410        | 410          | 550        | 550  | 720  | 720          | 900          |
| 500        | 560         | 150        | 280        | 280        | 440        | 440          | 600        | 600  | 780  | 780          | 1000         |
| 560        | 630         | 170        | 310        | 310        | 480        | 480          | 650        | 650  | 850  | 850          | 1100         |
| 630        | 710         | 190        | 350        | 350        | 530        | 530          | 700        | 700  | 920  | 920          | 1190         |
| 710        | 800         | 210        | 390        | 390        | 580        | 580          | 770        | 770  | 1010 | 1010         | 1300         |
| 800<br>900 | 900<br>1000 | 230<br>260 | 430<br>480 | 430<br>480 | 650<br>710 | 650<br>710   | 860<br>930 | 860  | 1120 | 1120<br>1220 | 1440<br>1570 |
| 900        | 1000        | 200        | 400        | 400        | 710        | 710          | 930        | 930  | 1220 | 1220         | 15/0         |

### (2) agujero cónico

| Diámetro   | Interior    |            |            |            | Jueg       | o Radial Int | erno         |              |              |              | пиаа. дтт    |
|------------|-------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Nominal,   | d (mm)      | С          | 2          | Está       | ndar       | С            | 3            | С            | 4            | С            | :5           |
| Más de     | Hasta       | Mín.       | Máx        | Mín.       | Máx        | Mín.         | Máx          | Mín.         | Máx          | Mín.         | Máx          |
| 18         | 24          | 15         | 25         | 25         | 35         | 35           | 45           | 45           | 60           | 60           | 75           |
| 24         | 30          | 20         | 30         | 30         | 40         | 40           | 55           | 55           | 75           | 75           | 95           |
| 30         | 40          | 25         | 35         | 35         | 50         | 50           | 65           | 65           | 85           | 85           | 105          |
| 40         | 50          | 30         | 45         | 45         | 60         | 60           | 80           | 80           | 100          | 100          | 130          |
| 50         | 65          | 40         | 55         | 55         | 75         | 75           | 95           | 95           | 120          | 120          | 160          |
| 65         | 80          | 50         | 70         | 70         | 95         | 95           | 120          | 120          | 150          | 150          | 200          |
| 80         | 100         | 55         | 80         | 80         | 110        | 110          | 140          | 140          | 180          | 180          | 230          |
| 100        | 120         | 65         | 100        | 100        | 135        | 135          | 170          | 170          | 220          | 220          | 280          |
| 120        | 140         | 80         | 120        | 120        | 160        | 160          | 200          | 200          | 260          | 260          | 330          |
| 140        | 160         | 90         | 130        | 130        | 180        | 180          | 230          | 230          | 300          | 300          | 380          |
| 160        | 180         | 100        | 140        | 140        | 200        | 200          | 260          | 260          | 340          | 340          | 430          |
| 180        | 200         | 110        | 160        | 160        | 220        | 220          | 290          | 290          | 370          | 370          | 470          |
| 200        | 225         | 120        | 180        | 180        | 250        | 250          | 320          | 320          | 410          | 410          | 520          |
| 225        | 250         | 140        | 200        | 200        | 270        | 270          | 350          | 350          | 450          | 450          | 570          |
| 250        | 280         | 150        | 220        | 220        | 300        | 300          | 390          | 390          | 490          | 490          | 620          |
| 280        | 315         | 170        | 240        | 240        | 330        | 330          | 430          | 430          | 540          | 540          | 680          |
| 315        | 355         | 190        | 270        | 270        | 360        | 360          | 470          | 470          | 590          | 590          | 740          |
| 355        | 400         | 210        | 300        | 300        | 400        | 400          | 520          | 520          | 650          | 650          | 820          |
| 400        | 450         | 230        | 330        | 330        | 440        | 440          | 570          | 570          | 720          | 720          | 910          |
| 450        | 500         | 260        | 370        | 370        | 490        | 490          | 630          | 630          | 790          | 790          | 1000         |
| 500        | 560         | 290        | 410        | 410        | 540        | 540          | 680          | 680          | 870          | 870          | 1100         |
| 560        | 630         | 320        | 460        | 460        | 600        | 600          | 760          | 760          | 980          | 980          | 1230         |
| 630        | 710         | 350        | 510        | 510        | 670        | 670          | 850          | 850          | 1090         | 1090         | 1360         |
| 710        | 800         | 390        | 570        | 570        | 750        | 750          | 960          | 960          | 1220         | 1220         | 1500         |
| 800<br>900 | 900<br>1000 | 440<br>490 | 640<br>710 | 640<br>710 | 840<br>930 | 840<br>930   | 1070<br>1190 | 1070<br>1190 | 1370<br>1520 | 1370<br>1520 | 1690<br>1860 |





# Cuadro 27: Juego radial interno de los rodamientos de rodillos cilíndricos y los rodamientos de agujas con anillo mecanizado.

(1) Rodamientos con agujero cilíndrico

Unidad: µm

| Diámetr        | o Interior     |              |                | ) Rodallic     |                |                | interno        |                |                |              |                   |
|----------------|----------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|-------------------|
| Nominal        | 'd (mm)        | С            | 2              | С              | N              | C              | 3              | C              | 2 4            | С            | 5                 |
| Más de         | Hasta          | Mín.         | Máx            | Mín.           | Máx.           | Mín.           | Máx.           | Mín.           | Máx.           | Mín.         | Máx.              |
| 10<br>24       | 10<br>24<br>30 | 0<br>0<br>0  | 25<br>25<br>25 | 20<br>20<br>20 | 45<br>45<br>45 | 35<br>35<br>35 | 60<br>60<br>60 | 50<br>50<br>50 | 75<br>75<br>75 | <br>65<br>70 | <br>90<br>95      |
| 30<br>40<br>50 | 40<br>50<br>65 | 5<br>5<br>10 | 5 30<br>5 35   |                | 50<br>60<br>70 | 45<br>50<br>60 | 70<br>80<br>90 | 60<br>70<br>80 | 70 100         |              | 105<br>125<br>140 |
| 65             | 80             | 10           | 45             | 40             | 50 85 75       |                | 100            | 90             | 125            | 130          | 165               |
| 80             | 100            | 15           | 50             | 50             |                |                | 110            | 105            | 140            | 155          | 190               |
| 100            | 120            | 15           | 55             | 50             |                |                | 125            | 125            | 165            | 180          | 220               |
| 120            | 140            | 15           | 60             | 60             | 105            | 100            | 145            | 145            | 190            | 200          | 245               |
| 140            | 160            | 20           | 70             | 70             | 120            | 115            | 165            | 165            | 215            | 225          | 275               |
| 160            | 180            | 25           | 75             | 75             | 125            | 120            | 170            | 170            | 220            | 250          | 300               |
| 180            | 200            | 35           | 90             | 90             | 145            | 140            | 195            | 195            | 250            | 275          | 330               |
| 200            | 225            | 45           | 105            | 105            | 165            | 160            | 220            | 220            | 280            | 305          | 365               |
| 225            | 250            | 45           | 110            | 110            | 175            | 170            | 235            | 235            | 300            | 330          | 395               |
| 250            | 280            | 55           | 125            | 125            | 195            | 190            | 260            | 260            | 330            | 370          | 440               |
| 280            | 315            | 55           | 130            | 130            | 205            | 200            | 275            | 275            | 350            | 410          | 485               |
| 315            | 355            | 65           | 145            | 145            | 225            | 225            | 305            | 305            | 385            | 455          | 535               |
| 355            | 400            | 100          | 190            | 190            | 280            | 280            | 370            | 370            | 460            | 510          | 600               |
| 400            | 450            | 110          | 210            | 210            | 310            | 310            | 410            | 410            | 510            | 565          | 665               |
| 450            | 500            | 110          | 220            | 220            | 330            | 330            | 440            | 440            | 550            | 625          | 735               |

Cuadro 28: Juego radial interno de los rodamientos de rodillos cónicos de doble hilera o apareados (agujero cilíndrico).

| Diámetro I | Diámetro Interior |      |     |      |       | Juego Radial Interno |       |           |       |                |      |  |  |
|------------|-------------------|------|-----|------|-------|----------------------|-------|-----------|-------|----------------|------|--|--|
| Nominal,   | d (mm)            | С    | :1  | С    | 2     | Está                 | indar | С         | 3     | C <sup>2</sup> | 1    |  |  |
| Más de     | Hasta             | Mín. | Máx | Mín. | Máx   | Mín.                 | Máx.  | Mín. Máx. |       | Mín.           | Máx. |  |  |
| 14         | 18                | 0    | 10  | 10   | 20    | 20                   | 30    | 30        | 40    | 40             | 50   |  |  |
| 18         | 24                | 0    | 10  | 10   | 20    | 20                   | 30    | 30        | 40    | 40             | 55   |  |  |
| 24         | 30                | 0    | 10  | 10   | 20    | 20                   | 30    | 30        | 45    | 45             | 60   |  |  |
| 30         | 40                | 0    | 12  | 12   | 25    | 25                   | 30 45 |           | 40 55 |                | 75   |  |  |
| 40         | 50                | 0    | 15  | 15   | 30    | 30                   |       |           | 45 60 |                | 80   |  |  |
| 50         | 65                | 0    | 15  | 15   | 30    | 30                   |       |           | 50 70 |                | 90   |  |  |
| 65         | 80                | 0    | 20  | 20   | 40    | 40                   | 60    | 60        | 80    | 80             | 110  |  |  |
| 80         | 100               | 0    | 20  | 20   | 45    | 45                   | 70    | 70        | 100   | 100            | 130  |  |  |
| 100        | 120               | 0    | 25  | 25   | 50    | 50                   | 80    | 80        | 110   | 110            | 150  |  |  |
| 120        | 140               | 0    | 30  | 30   | 30 65 |                      | 90    | 90        | 120   | 120            | 170  |  |  |
| 140        | 160               | 0    | 30  | 30   |       |                      | 100   | 100       | 140   | 140            | 190  |  |  |
| 160        | 180               | 0    | 35  | 35   |       |                      | 110   | 110       | 150   | 150            | 210  |  |  |
| 180        | 200               | 0    | 40  | 40   | 80    | 80                   | 120   | 120       | 170   | 170            | 230  |  |  |
| 200        | 225               | 0    | 40  | 40   | 90    | 90                   | 140   | 140       | 190   | 190            | 260  |  |  |
| 225        | 250               | 0    | 50  | 50   | 100   | 100                  | 150   | 150       | 210   | 210            | 290  |  |  |
| 250        | 280               | 0    | 50  | 50   | 110   | 110                  | 170   | 170       | 230   | 230            | 320  |  |  |
| 280        | 315               | 0    | 60  | 60   | 120   | 120                  | 180   | 180       | 250   | 250            | 350  |  |  |
| 315        | 355               | 0    | 70  | 70   | 140   | 140                  | 210   | 210       | 280   | 280            | 390  |  |  |
| 355        | 400               | 0    | 70  | 70   | 150   | 150                  | 230   | 230       | 310   | 310            | 440  |  |  |
| 400        | 450               | 0    | 80  | 80   | 170   | 170                  | 260   | 260       | 350   | 350            | 490  |  |  |
| 450        | 500               | 0    | 90  | 90   | 190   | 190                  | 290   | 290       | 390   | 390            | 540  |  |  |
| 500        | 560               | 0    | 100 | 100  | 210   | 210                  | 320   | 320       | 430   | 430            | 590  |  |  |
| 560        | 630               | 0    | 110 | 110  | 230   | 230                  | 350   | 350       | 480   | 480            | 660  |  |  |
| 630        | 710               | 0    | 130 | 130  | 260   | 260                  | 400   | 400       | 540   | 540            | 740  |  |  |
| 710        | 800               | 0    | 140 | 140  | 290   | 290                  | 450   | 450       | 610   | 610            | 830  |  |  |
| 800        | 900               | 0    | 160 | 160  | 330   | 330                  | 500   | 500       | 670   | 670            | 920  |  |  |





### 13.2 Selección del juego interno

La magnitud del juego de trabajo es un factor importante del cual dependen el funcionamiento y vida del rodamiento. A título ilustrativo se muestra en la figura 9-4 la relación entre el juego de trabajo y la vida de fatiga de un rodamiento de bolas típico y de un rodamiento de rodillos cilíndricos. En ambos casos puede verse que la vida de fatiga máxima se puede obtener con un juego de trabajo ligeramente negativo.

Sin embargo en la práctica resulta más seguro tratar de obtener un juego de trabajo algo superior, a la vista de las tolerancias admitidas en las dimensiones relacionadas, así como la variación temperatura del trabajo.

Para los rodamientos de bolas, el juego

deseable es tal que el valor medio de la gama de juegos de trabajo quede del lado positivo, próximo a cero. Para los rodamientos de rodillos es deseable que el valor mínimo de la misma gama se encuentre en la misma zona. Cuando se requiera una gran rigidez, o cuando sea necesario reducir al mínimo el ruido, entonces se especifica un juego reducido para que el juego de trabajo pueda quedar más del lado negativo, es decir que se obtenga una precarga. Por otra parte, generalmente se elige un juego superior al estándar cuando se prevea una temperatura

Es importante elegir el juego antes del montaje de tal manera que se obtenga un juego de trabajo óptimo de acuerdo con las condiciones de trabajo específicas.

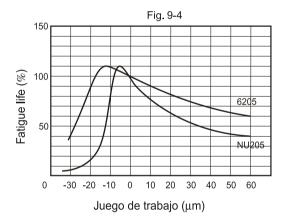
de trabaio elevada.

A continuación se describe el método para calcular el juego de trabajo para el caso de ejes y alojamientos de acero.

Juego de trabajo (S):

En general el juego de trabajo puede obtenerse mediante la siguiente fórmula  $S = S_0 - (S_f + S_{t1} + S_{t2}) + S_w$ 

Donde


 $S_0$  = Juego antes del montaje (mm)

S<sub>w</sub> = Incremento del juego debido a la carga (mm)

S<sub>f</sub> = Reducción de juego debido a la magnitud de interferencia (mm)

S<sub>t1</sub>= Reducción de juego debido a la diferencia de temperatura entre los aros int. y ext. (mm)

S<sub>t2</sub>= Reducción del juego debido a la expansión térmica de los elementos rodantes (mm)



Cuadro 29: Ejemplos de selección de juegos internos no estándares.

| Condiciones de servicio                                                                                          | Aplicaciones                                                                                       | Selección del juego int. |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|
| En caso de cargas pesadas y cargas de impacto.<br>Ajuste con gran interferencia                                  | Muñón de ejes en carros ferroviarios                                                               | C3                       |
| En caso de cargas vibratorias, cargas de impacto.<br>Ajuste de interferencia en ambos aros interno y<br>externo. | -Cribas vibratorias<br>-Motores de tracción de ferrocarriles<br>-Caja reductora final de tractores | C3, C4<br>C4<br>C4       |
| Cuando existe gran flexión de ejes                                                                               | Ruedas en ejes tractores de automóviles                                                            | C5                       |
| Cuando el eje y aro interno son calentados                                                                       | -Secadores en máquinas papeleras<br>-Rodillos de mesas laminadoras                                 | C3, C4<br>C3             |
| Cuando existe ajuste deslizante en los aros interno y externo.                                                   | Cuellos de rodillos laminadores                                                                    | C2                       |
| Cuando el ruido y la vibración durante el funcionamiento deben ser reducidos                                     | Micro-motores eléctricos                                                                           | C1, C2, CM               |
| Cuando el juego interno debe ser ajustado con el fin de reducir la desviación del eje.                           | Husillos de máquinas-herramientas (Tornos)                                                         | C9NA, C1NA               |

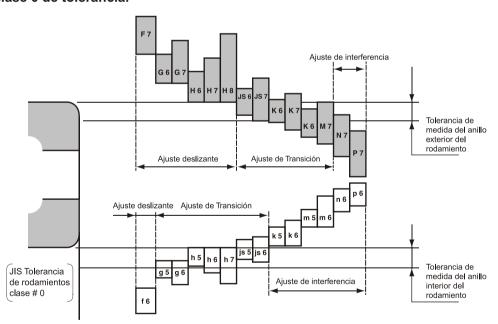




# 14. AJUSTES DE LOS RODAMIENTOS

### 14.1 Propósito del ajuste.

El propósito del ajuste de los rodamientos es combinar el anillo interno y externo, con el eje o el alojamiento, de manera que se logre un ajuste adecuado entre ambos, para así impedir su deslizamiento, pues este deslizamiento desventajoso (Ilamado "arrastre"), produciría una generación de calor anormal y el desgaste de las superficies de ajuste, lo cual afectará el funcionamiento del rodamiento por contaminación de partículas, vibraciones, etc.


Por esta razón, es necesario combinar los anillos del rodamiento bajo alta carga de rotación, con el eje o el alojamiento mediante un ajuste de interferencia (apriete), o bien un ajuste holgado si es conveniente para el funcionamiento de la maguinaria

## 14.2 Tolerancias y ajustes para ejes y alojamientos.

Para series de rodamientos métricos, las tolerancias para el diámetro del eje y el diámetro del agujero son estandarizadas por JIS B 0401 "límites y adaptaciones para ingeniería" en ISO 286.

Los ajustes de los rodamientos sobre los ejes y en los alojamientos, son determinados en tolerancias especificadas en la estandarización mencionada. La figura 13-1 muestra la relación entre las tolerancias paras ejes y diámetros de agujeros de alojamientos con los ajustes para rodamientos de la clase 0 de tolerancia.

# 14.3 Relación de la gama de tolerancias para los ejes (mitad inferior) y para los alojamientos de los soportes (mitas superior) con los ajustes para rodamientos de la clase 0 de tolerancia.



### 14.4 Selección de ajustes.

Para la selección del ajuste adecuado, deben ser considerados los factores siguientes:

- \*Dirección de la carga.
- \*Características y magnitud de la carga.
- \*Distribución de temperatura durante la operación
- \*Juego interno de los rodamientos.
- \*Acabado superficial, material y diámetro del eje y el alojamiento.
- \*Métodos de montaje y desmontaje.
- \*Necesidades de compensar la expansión térmica del eje en la superficie de ajuste.
- \*Tipo y tamaño del rodamiento.





### Selección de la Práctica de Ajuste.

### 1. Dirección de la Carga

La primera consideración que hay que hacer al elegir los ajustes en el eje y el alojamiento, es la dirección de la carga. La carga del rodamiento se puede dividir en tres tipos según su dirección: Carga giratoria en el anillo interior, carga giratoria en el anillo exterior, carga indeterminada.

### a) Carga Giratoria en el Anillo Interior

La carga giratoria en el anillo interior es aquella que gira alrededor del camino de rodadura del anillo interior (considerada como carga circunferencial) durante una revolución del rodamiento, mientras queda fija en una posición (designada como carga puntual) en el camino de rodadura del anillo exterior. En este caso es probable que se produzca arrastre (mov. relativo) entre el anillo interior y el eje. Para impedir ésto, el anillo interior debe tener ajuste duro sobre

el eje, mientras que el ajuste en el alojamiento debe ser suave.

### b) Carga Giratoria en el Anillo Exterior

En este caso la situación es inversa a la de la carga giratoria en el anillo interior. Por lo tanto es necesario utilizar un ajuste duro del anillo exterior en el alojamiento, mientras que el anillo interior puede tener un ajuste suave.

### c) Carga Indeterminada

Cuando se añaden a la carga debida al peso del cuerpo rotativo una carga desequilibrada y/o una carga vibratoria, entonces la carga resultante es compleja tanto en dirección como en magnitud, por lo que se denomina "Carga indeterminada".

En este caso, a menudo es necesario emplear ajustes duros tanto en el anillo interior como en el exterior.

Cuadro 30: Ajustes Recomendados en los Ejes para Rodamientos Radiales 1)

|                                             |                                                                                  |                         | Diámetro del Eje (n                                 | nm)                              |                            |                                                                                                                    |                                                            |
|---------------------------------------------|----------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|----------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                                             | Tipo de Carga                                                                    | Rodamientos<br>de Bolas | Rodamientos de<br>Rodillos Cilíndricos<br>y Cónicos | Rod. de<br>Rodillos<br>Esféricos | Símbolos de<br>Tolerancias | Observaciones                                                                                                      | Aplicaciones Típicas                                       |
|                                             |                                                                                  |                         |                                                     | Rodamientos de A                 | gujero Cilíno              | Irico                                                                                                              |                                                            |
| iratoria<br>anillo<br>rior                  | Anillo interior flotando con facilidad                                           | Too                     | dos los diámetros d                                 | del eje                          | g6                         | g5 y h5 se utilizan cuando se necesita<br>alta precisión. Para rodamientos de                                      | Ruedas sobre ejes fijos.                                   |
| Carga giratoria<br>en el anillo<br>exterior | Anillo interior no flotando con facilidad                                        | Too                     | dos los diámetros d                                 | del eje                          | h6                         | gran dimensión puede utilizarse f6.                                                                                | Poleas tensoras, poleas para cable.                        |
|                                             |                                                                                  | Inferior a 18           | -                                                   | _                                | h5                         |                                                                                                                    |                                                            |
|                                             | Cargas ligeras y Cargas                                                          | Más de 18<br>hasta 100  | Inferior a 40                                       | _                                | j6                         | Para aplicaciones que<br>exijan alta precisión<br>se recomienda                                                    | Aparatos eléctricos,<br>Máquinas herramientas,<br>Bombas.  |
|                                             | fluctuantes (P≦0.06 Ce)                                                          | Más de 100<br>hasta 200 | Más de 40<br>hasta 140                              |                                  | k6                         | utilizar J5,<br>K5 y m5 en lugar de j6,<br>k6 y m6                                                                 | Ventiladores,<br>Transportadores.                          |
| minada                                      |                                                                                  | _                       | Más de 140<br>hasta 200                             | _                                | m6                         |                                                                                                                    |                                                            |
| anillo interior o carga indeterminada       |                                                                                  | Inferior a 18           | _                                                   | _                                | j6                         |                                                                                                                    |                                                            |
| carga                                       |                                                                                  | Más de 18<br>hasta 100  | Inferior a 40                                       | Inferior a 40                    | k5                         |                                                                                                                    |                                                            |
| nterior c                                   |                                                                                  | Más de 100<br>hasta 200 | Más de 40<br>hasta 100                              | Más de 40<br>hasta 65            | m5                         | En los rodamientos de rodillos cónicos<br>de una hilera y en los rodamientos de<br>bolas de contacto angular puede | Motores eléctricos, Turbinas, Bombas,                      |
| anillo ir                                   | Cargas normales y cargas pesadas (P>0.06 Ce)                                     | _                       | Más de 100<br>hasta 140                             | Más de 65<br>hasta 100           | m6                         | sustituirse k5 y m5 por k6 y m6, al no<br>tener que considerarse la reducción                                      | Motores de combustión interna,<br>Máquinas para la madera. |
| eu                                          |                                                                                  |                         | Más de 140<br>hasta 200                             | Más de 100<br>hasta 140          | n6                         | de juego debida al ajuste de interferencia.                                                                        |                                                            |
| Carga giratoria                             |                                                                                  | _                       | Más de 200<br>hasta 400                             | Más de 140<br>hasta 280          | р6                         |                                                                                                                    |                                                            |
| Carç                                        |                                                                                  | _                       | _                                                   | Más de 280                       | r6                         |                                                                                                                    |                                                            |
|                                             | Cargas avannianales                                                              | _                       | Más de 50<br>hasta 140                              | Más de 50<br>hasta 100           | n6                         |                                                                                                                    |                                                            |
|                                             | Cargas excepcionalmente pesadas y cargas de impacto ( <i>P</i> >0.12 <i>Ce</i> ) | _                       | Más de 140<br>hasta 200                             | Más de 100<br>hasta 140          | p6                         | El juego del rodamiento debe ser superior al estándar                                                              | Ejes de vagones de ferrocaril,<br>Motores de tracción.     |
|                                             |                                                                                  | _                       | Más de 200                                          | Más de 140                       | r6                         |                                                                                                                    |                                                            |
| Sc                                          | plamente cargas axiales                                                          | Tod                     | os los diámetros de                                 | e eje                            | js6(j6)                    |                                                                                                                    |                                                            |

Nota: 1) Las tolerancias de ajuste indicadas se refieren a ejes macizos.





### Cuadro 31: Ajustes recomendados en los ejes para rodamientos axiales

| Tipo de                                     | e Carga                                                        | Diámetro del Eje (mm) | Símbolo de<br>Tolerancia |
|---------------------------------------------|----------------------------------------------------------------|-----------------------|--------------------------|
| Cargas a                                    | Hasta 250                                                      | j6                    |                          |
| (Rodamientos axiales de bolas y ro          | Más de 250                                                     | js6 o j6              |                          |
|                                             | Corres girettoria en el anillo outerior                        | Hasta 250             | j6                       |
| Carga Combinada                             | Carga giratoria en el anillo exterior                          | Más de 250            | js6 o j6                 |
| (Rodamientos axiales de rodillos esféricos) |                                                                | Hasta 200             | k6                       |
| Colon 1000)                                 | Carga giratoria en el anillo interior<br>o carga indeterminada | Más de 200 hasta 400  | m6                       |
|                                             | Ü                                                              | Más de 400            | n6                       |

# Cuadro 32: Ajustes recomendados en los alojamientos para rodamientos radiales (excepto rodamientos de bolas tipo magneto)<sup>1)</sup>

|                      |                                          | Tipo de Carga                                                                           | Símbolo de<br>Tolerancia      | Anillo exterior <sup>2)</sup> | Observaciones                                                                                                                                          | Aplicación Típica                                                                                            |
|----------------------|------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| g                    | en el                                    | Carga fuerte o de impacto<br>en el soporte de pared<br>delgada                          | P7                            |                               | Para rodamientos con un diámetro<br>exterior más de 500mm se recomienda<br>N7 en lugar de P7                                                           | Bujes de ruedas con<br>rodamientos de rodillos de<br>cabezas de biela.                                       |
| Sola pieza           | giratoria en<br>exterior                 | Carga normal y pesada                                                                   | N7                            |                               |                                                                                                                                                        | Bujes de rueda con rodamientos de bolas.                                                                     |
| de Una               | Carga (<br>anillo e                      | Carga ligera y carga<br>fluctuante                                                      | M7                            |                               | -                                                                                                                                                      | Rodillos de banda transportadora,<br>transportadores aéreos, poleas<br>tensoras.                             |
| orte                 |                                          | Carga de impacto pesada                                                                 |                               |                               |                                                                                                                                                        | Motores de tracción.                                                                                         |
| Soporte              | Carga indeterminada                      | Carga pesada y normal:<br>no se precisa<br>desplazamiento<br>axial del anillo exterior  | K7 Normalmente no desplazable |                               | Motores eléctricos,<br>bombas, cigüeñales.                                                                                                             |                                                                                                              |
| op                   | Carga inde                               | Carga normal y ligera:<br>es deseable el<br>desplazamiento<br>axial del anillo exterior | J7                            | Desplazable                   | Cuando se requiera un alto grado de<br>precisión, utilizar soporte de una sola<br>pieza y sustituir K7, J7 y H7 por K6,<br>J6 y H6.                    | Motores eléctricos,<br>bombas, cigüeñales.                                                                   |
| za o partido         | en el                                    | Carga de impacto: llega a producirse pasajeramente descarga completa                    |                               |                               | Para aplicaciones tales como<br>equipos de transmisión puede<br>utilizarse H8 en lugar de H7                                                           | Ejes de vagón de ferrocarril.                                                                                |
| Soporte de una pieza | Carga giratoria en el<br>anillo interior | Todos los tipos de carga                                                                | H7                            |                               |                                                                                                                                                        | Aplicaciones generales de<br>rodam., ejes de vagón de<br>ferrocarril, equipos de<br>transmisión de potencia. |
| Soporte              | Car                                      | Transmisión de calor a través del eje                                                   | G7                            | Fácilmente<br>desplazable     | -                                                                                                                                                      | Cilíndros secadores.                                                                                         |
|                      |                                          | Solamente carga axial                                                                   | _                             |                               | Utilizar una tolerancia adecuada para el diámetro interior del soporte de manera que se obtenga un juego radial entre el anillo exterior y el soporte. | _                                                                                                            |

Nota: 1) Este cuadro es aplicable para soportes de hierro fundido o acero. Para soportes de aleación ligera se recomienda utilizar unos ajustes más duros que los indicados.

### Cuadro 33: Ajustes recomendados en los alojamientos para rodamientos axiales

| Tip                                                               | oo de Carga                                                         | Símbolo de<br>Tolerancia |                                                                                                                                                                               |
|-------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solamente carga axial<br>(Todos los rodamientos<br>axiales)       | Cuando se utiliza otro rodamiento<br>para soportar la carga radial. | I                        | Utilizar una tolerancia <sup>1)</sup> adecuada para el<br>diámetro interior del soporte de manera<br>que se obtenga un juego radial entre el<br>anillo exterior y el soporte. |
| Carga Combinada<br>(Rodamientos axiales<br>de rodillos esféricos) | Carga giratoria en el anillo<br>interior, o carga<br>indeterminada  | Н7                       |                                                                                                                                                                               |
|                                                                   | Carga giratoria en el anillo exterior                               | М7                       | -                                                                                                                                                                             |

Nota: 1) Se recomienda H8 cuando sea necesario montar con precisión un rodamiento axial de bolas

Indica la distinción entre aplicaciones de rodamientos no separables que requieren y no requieren desplazamiento axial de los anillos exteriores.





### 15. PRÁCTICAS DE AJUSTES AUTOMOTRICES –PROBADAS EN CAMPO– SEGÚN APLICACIONES

En seguida se muestran las prácticas de ajustes más comunes usadas según las aplicaciones. Hay que considerar la conversión a un ajuste equivalente cuando se requiere aplicar rodamientos de rodillos cónicos en pulgadas. Para el campo automotriz se consideran los ajustes de acuerdo a lcomponente...

Cuadro 34: Ruedas (mayormente vehículos de pasajeros/coche de turismo)

| Conf.                            | Rueda     | T                                | ipo                                 | Eje        | Alojamiento | Aro que gira |
|----------------------------------|-----------|----------------------------------|-------------------------------------|------------|-------------|--------------|
| asera                            | Delantera | 1 par de roda<br>rodillos cónic  |                                     | f6, h6     | N7, P7, R7  | Aro externo  |
| Motor frontal/Tracción trasera   |           | Suspensión                       | 1 sólo rodam.<br>de bolas           | k6, m5, n5 | N6, J6, H-K | Aro interno  |
| al/Trac                          | Trasera   | semi-flotante                    | Tipo DAC                            | k6         | H7-K7       | Aro interno  |
| r fronta                         | liaseia   | Suspensión                       | 1 par de rodam. de rodillos cónicos | k6         | H7, M6      | Aro interno  |
| Moto                             |           | independiente                    | 1 par de rodam.<br>de bolas.        | n5         | J6          | Aro interno  |
| īa                               |           | 1 par de roda<br>rodillos cónic  |                                     | h6         | P7          | Aro interno  |
| elante                           | Delentere | "Ajuste-rápid<br>(46TDU)         | o", cartucho                        | k6         | P7, R7      | Aro interno  |
| ión de                           | Delantera | Unidad de cul<br>de rodillo cóni | oo con rodam.<br>cos (DUF)          | m6         |             | Aro interno  |
| /Tracc                           |           | Тіро 🛭                           | AC                                  | j6, k6, m6 | K7, R7-T7   | Aro interno  |
| rontal                           |           | 1 par de roda<br>rodillos cónic  |                                     | F6         | P7, R7      | Aro externo  |
| Motor frontal/Tracción delantera | Trasera   | "Ajuste-rápid<br>(46TDU)         | o", cartucho                        | (g6), m6   | R7          | Aro externo  |
| Σ                                |           | Tipo D                           | AC                                  | m6         | R7          | Aro externo  |

- (a) Materiales populares: acero para ejes, hierro fundido para alojamientos (FCA, FCD)
- (b) Si se usa el tipo DAC y el aro interno se atora, el juego interno axial después del montaje se deberá regular sobre -30 hasta +20 m
- (c) La precarga aplicada comúnmente para un par de rodamientos de rodillos cónicos es de aprox. 200 kgf.
- (d) Para los rodamientos de rodillos cónicos del tipo "ajuste-rápido" y de cartucho, para el juego interno axial después del montaje se aplica 80 m y sobre 400 kgf. como precarga.
- (e) Para rodamientos de bolas (uno sólo) en suspensiones de ejes flotantes se aplican juegos internos iniciales C3 y C4.

Cuadro 35: Diferencial (rodamientos de rodillos cónicos en vehículos con motor delantero/tracción trasera

| Elemento Componente | Eje        | Alojamiento |  |  |  |  |  |
|---------------------|------------|-------------|--|--|--|--|--|
| Piñon/delantero     | js6, j6    | K7, M7, N7  |  |  |  |  |  |
| Piñon/trasero       | k6, m6, n6 | N7, P7      |  |  |  |  |  |
| Diferencial/lateral | n6, p6     | M7, N7, P7  |  |  |  |  |  |

<sup>(</sup>a) Hierro fundido dúctil es usado comúnmente como material para alojamientos.

<sup>(</sup>bTanto ás pesada sea la carga y mayor el tamaño del rodamiento , más apretado será el ajuste (ver tabla arriba) .

<sup>(</sup>c) Los ajustes más populares para automóviles son: j6 y M7para piñón/delantero, m6 y N7 para /trasero y n6 con M7 para diferencial/lateral.





### Cuadro 36: Transmisión (incluye motocicletas)

| Tipo<br>Elemento/tamai | _             | amientos   | Rodamientos<br>de bolas | Rodamientos de rodillos cilíndricos | Rodamientos de rodillos cónicos |  |  |  |  |  |
|------------------------|---------------|------------|-------------------------|-------------------------------------|---------------------------------|--|--|--|--|--|
|                        | Diám. ext. ro | odam. (mm) |                         |                                     |                                 |  |  |  |  |  |
|                        | Sobre         | Hasta      |                         |                                     |                                 |  |  |  |  |  |
| Eje                    |               | 18         | j6                      | k6                                  | k6                              |  |  |  |  |  |
|                        | 18            | 40         | k6                      | k6                                  | k6                              |  |  |  |  |  |
|                        | 40            | 65         | k6                      | m6                                  | m6                              |  |  |  |  |  |
|                        | 65            | 100        | k6                      | m6                                  | m6                              |  |  |  |  |  |
| Aloiamionto            | Hierro        | fundido    | H6 ó H7, J6 ó J7        |                                     |                                 |  |  |  |  |  |
| Alojamiento            | Aleació       | n ligera   | M6 ó M7                 |                                     |                                 |  |  |  |  |  |

- (a) Existen algunas tolerancias tales como H, J, K, M y N para las pruebas de campo de ajuste en alojamientos de aleaciones ligeras. De hecho la tolerancia de ajuste es determinada por la construcción de las unidades, dificultades de ensamble, etc.
- (b) En casos de ajustes con precarga para rodamientos de rodillos cónicos, se usan ajustes flojos, ajustes de transición para el aro el interno (o el aro externo) el cual se ajusta por los lados para facilitar la operación.
- (c) Es común aplicar rodamientos de bolas y de rodillos cilíndricos con juego interno C3.

### **ALTERNADORES**

Para rodamientos rígidos de bolas popularmente se usan juegos internos iniciales del tipo CM.

Posición: delantera: Eje: g5, g6 Alojamiento: JS6, J7 Posición: trasera: Eje: k5 Alojamiento: JS6, K7

### BOMBAS DE AGUA

Para el eje o aro interno del rodamiento se tiene un ajuste de fabrica en la unidad.

Alojamiento: N7 (material: hierro fundido)

Alojamiento: U7 (material: aleación de aluminio)

CIGÜEÑAL (Motocicletas, motores de propósitos generales)

Eje: j6, k6 (igual que ajustes generales para condiciones de

carga pesada sobre el aro interno que gira)

Alojamiento: N6 ó N7, P6 ó P7, R6 ó R7 (aleaciones de aluminio)

- (a) Desde que los rodamientos para cigüeñales están sometidos a cargas elevadas e indeterminadas, así como fuerte oscilación, el ajuste en el alojamiento es fuerte para evitar deslizamientos sobre el aro externo y su alojamiento (otra razón para los alojamientos hechos de aleaciones de aluminio). En Adición, para prevenir deslizamientos o contragolpes, también se usan pasadores espirales, pasadores de golpe, recubrimientos de nylon o bujes de acero entre el aro externo y su alojamiento.
- (b) Frecuentemente se usan juegos internos C3 y C4.

VENTILADOR (embrague)

Eje: k6

Alojamiento: U7 (material: aleación de aluminio)





### Tolerancias en ejes y alojamientos.

Para lograr los ajustes correctos de Deslizamientos (juegos) o de Interferencia (aprietes) de ejes o alojamientos en diámetros de anillos internos y externos de rodamientos, los fabricantes de rodamientos recomiendan los ajustes indicados en las tablas, los cuales son selecciones de grados de tolerancias dimensionales ISO para el caso específico de ajustes de rodamientos en ejes y alojamientos.

La precisión del mecanizado (tolerancia dimensional) de la superficie del asiento del rodamiento en el eje debe tener como mínimo grado 6 (variará entre 5 y 6) en el caso de que entre la superficie del eje y el rodamiento se interpongan manguitos de fijación o de desmontaje (caso de rodamientos con agujero cónico) se podrán utilizar tolerancias dimensionales superiores (grado 9 a grado 10) para la superficie del eje en contacto con el manguito.

Cuadro 37: Tolerancias en los ejes (desviaciones respecto a la dimensión nominal) Ejes macizos de acero.

|        | ominal<br>m) | ~F                       | 15 10             |          |              |               | 1-0           |             | :0                      | 1.5                   |                        |      | - ^                            |             | Ι.           |                              |                      | _                      | Día. No<br>(mi |              | Tolerar<br>Básic |     | $\Lambda$ dmp           |
|--------|--------------|--------------------------|-------------------|----------|--------------|---------------|---------------|-------------|-------------------------|-----------------------|------------------------|------|--------------------------------|-------------|--------------|------------------------------|----------------------|------------------------|----------------|--------------|------------------|-----|-------------------------|
| Más de | 广一           | g6                       | h5 h6             | h9       | h10          | js5           | js6           | j5          | j6                      | k5                    | k6                     | m!   | 5 m6                           | n6          | p6           | ١                            | r6                   | r7                     | Más de         | ľ            | IT5              | IT7 | del rodam.<br>(Clase O) |
| 3      | 6            | - 4<br>- 12              | 0 0<br>-5-8-      | 0<br>30  | 0<br>- 48    | <b>±</b> 2.5  | ± 4           | + 3<br>- 2  | + 6<br>- 2              | + 6<br>+ 1            | + 9<br>+ 1             | + 9  |                                |             |              |                              |                      | + 27<br>+ 15           | 3              | 6            | 5                | 12  | 0 8                     |
| 6      | 10           | <b>-</b> 5 <b>-</b> 14   | 0 0               | 0<br>36  | 0<br>- 58    | <b>±</b> 3    | ± 4.5         | + 4         | + 7<br>- 2              | + 7<br>+ 1            | +10                    | +12  |                                | + 1         | 9 + 2        | 24 +                         | + 28<br>+ 19         | + 34<br>+ 19           | 6              | 10           | 6                | 15  | 0 - 8                   |
| 10     | 18           | <b>-</b> 6 <b>-</b> 17   | 0 0               | 0<br>43  | 0<br>- 70    | ± 4           | <b>±</b> 5.5  | + 5<br>- 3  | + 8                     | <b>+</b> 9 <b>+</b> 1 | +12                    | + 15 |                                | + 2         | 3 + 2        | 29 +                         | + 34<br>+ 23         | + 41<br>+ 23           | 10             | 18           | 8                | 18  | 0 - 8                   |
| 18     | 30           | <b>-</b> 7 <b>-</b> 20   | 0 0               | 0<br>52  | 0<br>- 84    | ± 4.5         | <b>±</b> 6.5  | + 5<br>- 4  | + 9<br>- 4              | +11                   | +15<br>+ 2             | +17  | - ,                            | + 2         | 3 + 3        | 35 +                         | + 41<br>+ 28         | + 49<br>+ 28           | 18             | 30           | 9                | 21  | 0                       |
| 30     | 50           | <b>-</b> 9 <b>-</b> 25   | 0 0               | 0<br>62  | 0 - 100      | <b>±</b> 5.5  | ± 8           |             | +11                     | _                     | +18                    | + 20 | )+ 25                          | + 3         | 3 + 4        | 12 +                         | F 50<br>F 34         | + 59<br>+ 34           | 30             | 50           | 11               | 25  | 0<br>-12                |
| 50     | 00           | <b>-</b> 10              | -11 - 16 -<br>0 0 | 02       | 0            |               |               | + 6         | +12                     | +15                   | + 2                    | + 24 |                                | + 3         | _            | ., +                         | ► 60<br>► 41         | + 71<br>+ 41           | 50             | 65           | 13               | 30  | 0                       |
| 50     | 80           | <b>-</b> 29              | -13 - 19 -        | 74       | -120         | ± 6.5         | <b>±</b> 9.5  | <b>-</b> 7  | <b>-</b> 7              | + 2                   | + 2                    | +11  |                                | + 2         | -            | - 1                          | F 62<br>F 43         | + 73<br>+ 43<br>+ 86   | 65             | 80           | 13               | 30  | <b>-</b> 15             |
| 80     | 120          | <b>-</b> 12 <b>-</b> 34  | 0 0<br>-15 - 22 - | 0<br>87  | 0<br>-140    | <b>±</b> 7.5  | <b>±</b> 11   | <b>+</b> 6  | <b>+</b> 13 <b>-</b> 9  |                       | +25<br>+ 3             | + 28 | 3 <b>+</b> 35<br>3 <b>+</b> 13 | + 4+ 2      |              | <sup>9</sup>   ‡             | F 51                 | + 51<br>+ 89<br>+ 54   | 80<br>100      | 100<br>120   | 15               | 35  | 0<br>-20                |
|        |              | <b>-</b> 14              | 0 0               | 0        | 0            |               |               | + 7         | +14                     | +21                   | +28                    | + 33 | 3 <b>+</b> 40                  | + 5         | 2 + 6        | 10 +                         | ► 88<br>► 63         | +103<br>+ 63           | 120            | 140          |                  |     | 0                       |
| 120    | 180          |                          | -18 - 25 -        |          | <b>-</b> 160 | <b>±</b> 9    | <b>±</b> 12.5 |             | - 11                    | + 3                   | + 3                    | +15  | + 15                           | + 2         |              | ±3  ‡                        | • 90<br>• 65<br>• 93 | +105<br>+ 65<br>+108   | 140<br>160     | 160<br>180   | 18               | 40  | <b>-</b> 25             |
|        |              | 15                       | 0 0               | 0        | 0            |               |               | . 7         | . 16                    | 1.24                  | +33                    | 1.25 | 7 <b>+</b> 46                  | + 6         | ) + 7        |                              | ► 68<br>►106<br>► 77 | + 68<br>+ 123<br>+ 77  | 180            | 200          |                  |     | 0                       |
| 180    | 250          | <b>-</b> 15 <b>-</b> 44  | 0 0<br>-20 - 29 - | 0<br>115 | - 185        | <b>±</b> 10   | <b>±</b> 14.5 |             | <b>+</b> 16 <b>-</b> 13 |                       | + 4                    |      | 7 <b>+</b> 17                  | + 3         |              | 50                           | ►109<br>► 80<br>►113 | + 126<br>+ 80<br>+ 130 | 200<br>225     | 225<br>250   | 20               | 46  | <b>-</b> 30             |
| 050    | 045          | <b>-</b> 17              | 0 0               | 0        | 0            |               |               | + 7         | <b>+</b> 16             | +27                   | +36                    | + 43 | 3 <b>+</b> 52                  | + 6         | 5 <b>+</b> 8 | +                            | ► 84<br>►126<br>► 94 | + 84<br>+ 146<br>+ 94  | 250            | 280          |                  |     | 0                       |
| 250    | 315          | <b>-</b> 49              | -23 - 32 -        |          | -210         | ± 11.5        | <b>±</b> 16   | <b>-</b> 16 | <b>-</b> 16             |                       | + 4                    |      | )+ 20                          | + 3         |              | 56 +                         | ►130<br>► 98         | +150<br>+ 98           | 280            | 315          | 23               | 52  | <b>-</b> 35             |
| 315    | 400          | <b>-</b> 18 <b>-</b> 54  | 0 0<br>-25 - 36 - | 0<br>140 | 0<br>-230    | <b>±</b> 12.5 | <b>±</b> 18   |             | +18<br>-18              |                       | <b>+</b> 40 <b>+</b> 5 |      | 5+ 57<br>1+ 21                 | + 7<br>+ 3  |              | 78   <del>+</del>            | ►144<br>►108<br>►150 | +165<br>+108<br>+171   | 315<br>355     | 355<br>400   | 25               | 57  | 0<br>-40                |
| 400    | 500          | - 20                     | 0 0               | 0        | 0            | + 10 =        | + 20          |             | + 20                    |                       | +45                    |      | )+ 63                          | + 8         | ) +10        | , +                          | ►114<br>►166<br>►126 | +114<br>+189<br>+126   | 400            | 450          | 27               | 63  | 0                       |
| 400    | 500          | <b>-</b> 60              | -27 - 40 -        | 155      | -250         | ± 13.5        | <b>I</b> 20   | -20         | <b>-</b> 20             | + 5                   | + 5                    | + 23 |                                | + 4         | ) + 6        | +                            | ►172<br>►132<br>►194 | +195<br>+132<br>+220   | 450            | 500          | 21               | 03  | <b>-</b> 45             |
| 500    | 630          | <b>-</b> 22 <b>-</b> 66  | 44 -              | 0<br>175 | 0<br>-280    | _             | <b>±</b> 22   | _           | _                       | _                     | +44<br>+ 0             | +    | + 70<br>+ 26                   | . 0         |              | <sup>22</sup> + <del>1</del> | ►150<br>►199<br>►155 | +150<br>+225<br>+155   | 500<br>560     | 560<br>630   |                  | 70  | 0<br><b>-</b> 50        |
| 630    | 800          | - 24                     | 0                 | 0        | 0            |               | <b>±</b> 25   |             |                         |                       | +50                    | +    | + 80                           | - 10        |              | 38 ‡                         | ►225<br>►175         | + 255<br>+ 175         | 630            | 710          |                  | 80  | 0                       |
| 030    | 000          | <b>-</b> 74              | 50 -              |          | -320         | -             | - 23          | -           | -                       | -                     | + 0                    | +    | + 30                           | + 5         |              | +                            | ►235<br>►185<br>►266 | +265<br>+185<br>+300   | 710<br>800     | 800<br>900   |                  |     | <b>-</b> 75             |
| 800    | 1000         | <b>-</b> 26 <b>-</b> 82  | 56 <b>-</b>       | 0<br>230 | -360         | -             | <b>±</b> 28   | _           | _                       | -                     | +56<br>+ 0             | +    | + 90<br>+ 34                   | + 11<br>+ 5 |              | 06   <del>+</del>            | F210<br>F276<br>F220 | +210<br>+310<br>+220   | 900            | 1000         |                  | 90  | 0<br>-100               |
| 1000   | 1250         | - 28                     | 0                 | 0        | 0            |               | ± 33          |             |                         |                       | +66                    | +    | + 106                          | . 10        |              | 36 ‡                         | F316<br>F250         | +355<br>+250           | 1000           | 1120         |                  | 105 |                         |
|        |              | <b>-</b> 94              | 66 -              |          | -420         | -             | _ 00          | -           | -                       | -                     | + 0                    | +    | + 40                           | · ·         | -            | +                            | ►326<br>►260<br>►378 | +365<br>+250<br>+425   | 1120<br>1250   | 1250<br>1400 |                  |     |                         |
| 1250   | 1600         | <b>-</b> 30 <b>-</b> 108 | 78 -              | 0<br>310 | <b>-</b> 500 | -             | <b>±</b> 39   | -           | -                       | -                     | + 0                    | +    | + 48                           | + 15<br>+ 7 |              | 10 +                         | ►300<br>►408<br>►330 | +300<br>+455<br>+330   | 1400           | 1600         |                  | 125 |                         |
| 1600   | 2000         | <b>-</b> 32              | 0                 | 0        | 0            |               | ± 46          |             |                         |                       | +92<br>+ 0             | +    | + 150<br>+ 58                  | + 18        |              | 52 ‡                         | ►462<br>►370         | +520<br>+370           | 1600           | 1800         |                  | 150 |                         |
|        |              | -124                     | 92 -              | 370      | <b>-</b> 600 | -             | _ 10          | -           | -                       | _                     | + 0                    | +    | + 58                           | + 9         | 2 +17        | ″U  ‡                        | ►492<br>►400         | +550<br>+400           | 1800           | 2000         |                  |     |                         |





### Tolerancias para la forma geométrica.

Las tolerancias para la cilindricidad según ISO 1101-1983 debe estar entre 1 a 2 grados IT sobre la tolerancia de dimensiones utilizada (Ejm. si la tolerancia de mecanizado de un eje es de k6 la precisión de la forma cilíndrica debe ser IT5 o IT4). Para montaje sobre manguitos de fijación o de desmontaje la cilíndricidad de la superficie de asiento deberá ser IT5/2 para h9 e IT7/2 para h10 (para montaje sobre manguito siempre se mecaniza el eje con ajuste deslizante).

Cuadro 38: Tolerancias en los alojamientos (desviación respecto a la dimensión nominal) Soportes de fundición de hierro o de acero.

| Día. No<br>(m |       | q6            | H6 H      | H7 H8                                                | J6 J7                 | Js6           | Js7  | K6               | K7                                 | М6            | M7                           | N6 N7                  | P6 P7                   | Día. No<br>(m |       | ∆Ddmp<br>del rodam.         |
|---------------|-------|---------------|-----------|------------------------------------------------------|-----------------------|---------------|------|------------------|------------------------------------|---------------|------------------------------|------------------------|-------------------------|---------------|-------|-----------------------------|
| Más de        | Hasta | 9-            |           |                                                      |                       |               |      |                  |                                    |               |                              |                        |                         | Más de        | Hasta | (Clase O)                   |
| 10            | 18    | + 24<br>+ 6   | + 11 +    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | + 6 + 10<br>- 5 - 8   | ± 5.5         | ± 9  | + 2<br>- 9       |                                    | - 4<br>- 15   | - <sub>18</sub>              | - 9 - 5<br>- 20 - 23   | - 15 - 11<br>- 26 - 29  | 10            | 18    | - <sup>0</sup> <sub>8</sub> |
| 18            | 30    | + 28<br>+ 7   | + 13 +    | 21 + 33<br>0 0                                       | + 8 + 12<br>- 5 - 9   | ± 6.5         | ± 10 | + 2<br>- 11      |                                    | - 4<br>- 17   | - <sub>21</sub>              | - 11 - 7<br>- 24 - 28  | - 18 - 14<br>- 31 - 35  | 18            | 30    | <b>-</b> 9                  |
| 30            | 50    | + 34<br>+ 9   | + 16 +    | 25 + 39<br>0 0                                       | + 10 + 14<br>- 6 - 11 | ± 8           | ± 12 | + 3<br>- 13      | + 7<br>- 18                        | - 4<br>- 20   | - <sup>0</sup> - 25          | - 12 - 8<br>- 28 - 33  | - 21 - 17<br>- 37 - 42  | 30            | 50    | - 0<br>- 11                 |
| 50            | 80    | + 40<br>+ 10  | + 19 +    | 30 + 46<br>0 0                                       | + 13 + 18<br>- 6 - 12 | ± 9.5         | ± 15 | + 4<br>- 15      | + 9<br>- 21                        | - 5<br>- 24   | - 30                         | - 14 - 9<br>- 33 - 39  | - 26 - 21<br>- 45 - 51  | 50            | 80    | 0<br>- 13                   |
| 80            | 120   | + 47<br>+ 12  | + 22 +    | 35 + 54<br>0 0                                       | + 16 + 22<br>- 6 - 13 | ± 11          | ± 17 |                  | + 10<br>- 25                       | - 6<br>- 28   | - 35                         | - 16 - 10<br>- 38 - 45 | - 30 - 24<br>- 52 - 59  | 80            | 120   | 0<br>- 15                   |
| 120           | 180   | + 54<br>+ 14  | + 25 +    | 40 + 63<br>0 0                                       | + 18 + 26<br>- 7 - 14 | ±12.5         | ± 20 | - 21             | - <sup>12</sup><br>- <sup>28</sup> | - 8<br>- 33   | - 40                         | - 20 - 12<br>- 45 - 5  | - 36 - 28<br>- 61 - 68  | 120           | 180   | (≤150) 0−18<br>(≤150) 0−25  |
| 180           | 250   | + 61<br>+ 15  | + 29 +    | 46 + 72<br>0 0                                       | + 22 + 30<br>- 7 - 16 | <u>±</u> 14.5 | ± 23 | 5<br>- 24        | 13<br>- 33                         | - 8<br>- 37   | - <sup>0</sup> <sub>46</sub> | - 22 - 14<br>- 51 - 60 | - 41 - 33<br>- 70 - 79  | 180           | 250   | - 30                        |
| 250           | 315   | + 69<br>+ 17  | + 32 +    | 52 + 81<br>0 0                                       | + 25 + 36<br>- 7 - 16 | ± 16          | ± 26 | 5<br><b>-</b> 27 | 16<br>- 36                         | - 9<br>- 41   | - <sub>52</sub>              | - 25 - 14<br>- 57 - 66 | - 47 - 36<br>- 79 - 88  | 250           | 315   | - 30                        |
| 315           | 400   | + 75<br>+ 18  | + 36 +    | 57 + 89<br>0 0                                       | + 29 + 39<br>- 7 - 18 | ± 18          | ± 28 | 7<br>- 29        | 17<br>- 40                         | - 10<br>- 46  | - <sub>57</sub>              | - 26 - 16<br>- 62 - 73 | - 51 - 41<br>- 87 - 98  | 315           | 400   | - 40                        |
| 400           | 500   | + 83<br>+ 20  | + 40 +    | 63 + 97<br>0 0                                       | + 33 + 43<br>- 7 - 20 | ± 20          | ± 31 | - 32             | 18<br>- 45                         | - 10<br>- 50  | - 0<br>- 63                  | - 27 - 17<br>- 67 - 80 | - 55 - 45<br>- 95 - 108 | 400           | 500   | 0<br>- 45                   |
| 500           | 630   | + 92<br>+ 22  | + 44 +    | 70 + 110<br>0 0                                      |                       | ± 22          | ± 35 | 0<br>- 44        | - 70                               | - 26<br>- 70  | - 26<br>- 96                 | - 44 - 44<br>- 88 -114 | - 78 - 78<br>-122 -148  | 500           | 630   | - <sup>0</sup> 50           |
| 630           | 800   | + 104<br>+ 24 | + 50 +    | 80 + 125<br>0 0                                      |                       | ± 25          | ± 40 | 0<br>- 50        | - 80                               | - 30<br>- 80  | - 30<br>-100                 | - 50 - 50<br>-100 -130 | - 88 - 88<br>-138 -168  | 630           | 800   | 0<br>- 75                   |
| 800           | 1000  | + 116<br>+ 26 | + 56 +    | 90 + 140<br>0 0                                      |                       | ± 28          | ± 45 | 0<br>- 56        | - 90                               | - 34<br>- 90  | - 34<br>-124                 | - 56 - 56<br>-112 -146 | -100 -100<br>-156 -190  | 800           | 1000  | 0<br>-100                   |
| 1000          | 1250  | + 133<br>+ 28 | + 66 + 3  | $\begin{array}{ccc} 105 & +165 \\ 0 & 0 \end{array}$ |                       | ± 33          | ± 52 | 0<br>- 66        | 0<br>-105                          | - 40<br>- 106 |                              | - 66 - 66<br>-132 -171 | -120 -120<br>-186 -225  | 1000          | 1250  | 0<br>-125                   |
| 1250          | 1600  | + 155<br>+ 30 | + 78 + 7  | 125 + 195<br>0 0                                     |                       | ± 39          | ± 62 | - 78             | 0<br>-125                          | - 48<br>- 126 |                              | - 78 - 78<br>-156 -203 | -140 -140<br>-218 -265  | 1250          | 1600  |                             |
| 1600          | 2000  | + 182<br>+ 32 | + 92 + 3  | 150 + 230<br>0 0                                     |                       | ± 46          | ± 75 | - 92             | 0<br><b>-</b> 150                  | - 58<br>-150  |                              | - 92 - 92<br>-184 -242 | -170 -170<br>-262 -320  | 1600          | 2000  |                             |
| 2000          | 2500  | + 209<br>+ 34 | + 110 + 3 | 175 + 280<br>0 0                                     |                       | ±55           | ±87  | 0<br>-110        | 0<br><b>-</b> 75                   | - 68<br>-178  | - 68<br>- 243                | -110 -110<br>-220 -285 | -195 -195<br>-305 -370  | 2000          | 2500  |                             |





|                       | SELEC                                                | CCIÓN DE MATE                    | CIÓN DE MATERIALES DE OBTURACIONES | IRACIONES                        |                                  |
|-----------------------|------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|
|                       | Material                                             | Caucho nitrílico                 | Caucho acrílico                    | Caucho de silicon                | Caucho fluorado                  |
|                       | Cod.                                                 | NBR                              | ACM, ANM                           | VMQ                              | FKM                              |
| Rango d<br>(Rango n   | Rango de temperatura<br>(Rango normal de aplicación) | - 45 ~ + 130 C<br>(- 30 ~ + 100) | - 30 ~ + 180 C<br>(- 20 ~ + 150)   | - 90 ~ + 250 C<br>(- 55 ~ + 180) | - 30 ~ + 280 C<br>(- 20 ~ + 220) |
| Límite de             | Límite de velocidad del labio                        | 12 m/s                           | 15 m/s                             | 18 m/s                           | 20 m/s                           |
| Resisten              | Resistencia a la grasa                               | 0                                | 0                                  | 0                                |                                  |
| Resisten              | Resistencia a la abrasión                            |                                  |                                    | ×                                | 0                                |
| Resisten              | Resistencia al arrastre                              | 0                                | 4                                  | 4                                |                                  |
| Resisten              | Resistencia al agua                                  | 0                                | ×                                  | 0                                |                                  |
| Resist. a             | Resist. a bajas cond. de lubricación                 |                                  | 0                                  | 4                                | •                                |
| ese <sub>2</sub> -5   | Aceite mineral                                       | 0                                | 0                                  | 0                                |                                  |
|                       | Aceite sintético                                     |                                  | $\triangleleft$                    | $\triangleleft$                  |                                  |
| Lubricantes E.P.      | tes E.P.                                             | 0                                | •                                  | ×                                |                                  |
| Agua (100°C)          | )0°C)                                                |                                  | ×                                  | 0                                |                                  |
| Gasolina              | Gasolina y otros aceites ligeros                     |                                  | 0                                  |                                  |                                  |
| Tricloroetileno       | tileno                                               | ×                                | X                                  | 0                                |                                  |
| Resisten              | Resistente a ácidos diluidos                         | 0                                | 0                                  | 0                                |                                  |
| Resisten              | Resistente a álcalis diluido                         | 0                                | ×                                  | 0                                |                                  |
| Resisten              | Resistencia al ozono                                 | ×                                | •                                  |                                  |                                  |
| Relación<br>(solament | Relación de precios (solamente material de caucho)   | 1                                | <b>©</b> 2                         | 80                               | $\triangle$ 20                   |
|                       | Excelente                                            | O Bueno                          | ∴ Regular X Malo                   | lalo XX No aplicable             | ole                              |





### **Material** $\bigcirc$ Sello Forma Factor y sus efectos Material Retenedor Efecto bajo Forma **REQUERIMIENTOS DE FUNCIONAMIENTO** Grasa $\langle$ $\bigcirc$ Roda-mientos $\langle$ $\langle$ $\langle$ 0 O Efecto medio Protección contra aceite externo y resistencia a presión externa Adecuado para alineamiento relativo del anillo interior y exterior Requerimientos de funcionamiento Alta durabilidad - Eficiencia de hermeticidad Alta durabilidad - A prueba de polvo y agua Protección contra lodo y agua salada Resistencia a bajas temperaturas Efecto alto Resistencia a alta temperatura Resistencia a alta velocidad Diseño compacto Baja fricción funcionamiento funcionamiento pásicos de esbeciales de Reduerimientos Reduerimientos





# **GRASAS PARA RODAMIENTOS KOYO**

# 1 - RODAMIENTOS MINIATURA Y PEQUEÑOS.

| Punto de Goteo Rango de | 191 C - 40 C a 130 C                                               | Punto de Goteo Rango de<br>Temperatura. | 183 C - 20 a 100 C<br>182 C - 10 a 100 C | 198 C - 40 a 100 C                     | 194 C - 50 a 100 C | 191 C - 40 a 130 C<br>250C - 40 a 130 C<br>250 C - 40 a 130 C<br>250 C   |
|-------------------------|--------------------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|--------------------|--------------------------------------------------------------------------|
| Aceite Base             | Ester                                                              | Aceite Base                             | Aceite mineral<br>Aceite mineral         | Diester<br>A. mineral                  | Diester            | Ester<br>Pao (Polialfaolefinas)<br>Aceite mineral<br>Ester<br>A. mineral |
| Espesante               | Jabón de Litio                                                     | Espesante                               | Jabón de Litio<br>Jabón de Litio         | Jabón de Litio                         | Jabón de Litio     | Jabón de Litio<br>Compuesto de<br>Urea<br>Jabón de base<br>Sodio         |
| • USO GENERAL. Grasa    | Multemp SRL. Motores Eléctricos • Condiciones Normales de Trabajo. | Grasa                                   | Alvania RA<br>Alvania 2                  | • Bajas Temperaturas.<br>Multemp. PS2. | Beacon 325         | • Amplio Rango de Temperatura.<br>Multemp. SRL.<br>KNG 144<br>Wr3        |





# RODAMIENTOS EN CONDICIONES ESPECIALES DE TRABAJO

# 2 - BAJA TEMPERATURA DE OPERACIÓN

Temperatura mínima -40 C

| Grasa Es                                                       | Espesante                        | Aceite Base                              | Punto de Goteo     | Rango de<br>Temperatura.   |
|----------------------------------------------------------------|----------------------------------|------------------------------------------|--------------------|----------------------------|
| Multemp. SRL Ja<br>Multemp. PS2 Ja                             | Jabón de Litio<br>Jabón de Litio | Ester<br>Diester<br>A. mineral.          | 191 C<br>198 C     | -40 a 130 C<br>-40 a 100 C |
| • Temperatura mínima -50 C<br>Multemp. LT2 Ja<br>Beacon 325 Ja | Jabón de Litio<br>Jabón de Litio | Diester<br>Diester                       | 192 C<br>194 C     | -50 a 100 C<br>-50 a 100 C |
| • Temperatura mínima -70 C<br>Baja Temp. EP Ja                 | Jabón de Litio                   | Diester                                  | 179 C              | -70 a 120 C                |
| 3 -ALTA VELOCIDAD DE OPERACIÓN:                                |                                  |                                          |                    |                            |
| • Funcionamiento a Alta Temperatura Cc<br>KNG 144              | Compuesto de<br>Urea             | Pao (Polialfaolefinas)<br>Aceite mineral | Sobre los<br>250 C | -30 a 130 C                |
| • Funcionamiento a Baja temperatura.<br>Beacon 325 Ja          | Jabón de Litio                   | Diester                                  | 194 C              | -50 a 100 C                |





| 4 -BAJO TORQUE:<br>Beacon 325                                | Jabón de Litio                     | Diester                                            | 194 C                   | -50 a 100 C            |
|--------------------------------------------------------------|------------------------------------|----------------------------------------------------|-------------------------|------------------------|
| Aeroshell 12<br>(Aceite).                                    |                                    | Diester                                            |                         | -50 a 100 C            |
| 5 -ALTA TEMPERATURA DE OPERACIÓN:                            | RACIÓN:                            |                                                    |                         |                        |
| • Temperatura. máx. de 150 C<br>KNG170                       | Compto. de Urea                    | Pao (Polialfaolefinas)                             | Sobre los               | -30 a 150 C            |
| Dorlum R<br>Chevron Sr12                                     | Compto. de Urea<br>Compto. de Urea | Aceite mineral<br>Aceite mineral<br>Aceite mineral | 250 C<br>236 C<br>239 C | 0 a 150 C<br>0 a 150 C |
| <ul> <li>Temperatura máx. de 180 C</li> <li>SH44M</li> </ul> | Jabón de litio                     | Silicona                                           | 224 C                   | -30 a 180 C            |
| G40M                                                         | Jabón de litio                     | Silicona                                           | 222 C                   | -30 a 180 C            |
| • Temperatura máx. de 220 C<br>FS3451 No.2                   | Resina de fluor                    | Fluorosilicona                                     | 250 C                   | -40 a 220 C            |
| • Temperatura máx. de 250 C<br>Barrlerta<br>IFF552           | Resina A.                          | Fluorado<br>A Sintático                            | Sobre los               | -30 a 250 C            |
| Krytox<br>240AC                                              | Resina A.<br>de flour              | Fluorina                                           | Sobre los<br>250 C      | -30 a 250 C            |
|                                                              |                                    |                                                    |                         |                        |





| 6 -AUTOMÓVILES:     | :8:                                                                                  |                                         |                                                      |                             |                            |
|---------------------|--------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|-----------------------------|----------------------------|
|                     | Grasa                                                                                | Espesante                               | Aceite Base                                          | Punto de<br>Goteo           | Rango de<br>Temperatura    |
| • Embrague.         | Temprex No. 3                                                                        | Complejo de litio                       | Aceite mineral                                       | Sobre los<br>250 C          | -10 a 130 C                |
| • Bomba de agua.    | Alvanla 3<br>W 191                                                                   | Jabón de litio<br>Compuesto de Urea     | Aceite mineral<br>Aceite sintético<br>Aceite mineral | 186 C<br>Sobre los<br>270 C | -10 a 100 C<br>-30 a 130 C |
| • Alternador (Cond  | <ul> <li>Alternador (Condiciones Normales de Tr<br/>Multemp SRL</li> </ul>           | <b>rabajo).</b><br>Jabón de litio       | Éster                                                | 191 C                       | -40 a 130 C                |
| • Elevadas Velocida | <ul> <li>Elevadas Velocidades y Temperaturas de<br/>KNG170</li> </ul>                | d <b>e Trabajo</b><br>Compuesto de Urea | Pao (Polialfaolefinas)                               | 250 C                       | -30 a 150 C                |
|                     | Multemp LRL                                                                          | Jabón de litio                          | Acelte mineral<br>Éster                              | 208 C                       | -30 a 130 C                |
| • Embrague electro  | • Embrague electromagnético para aire ac<br>KNG 170                                  | condicionado.<br>Compuesto de Urea      | Pao (Polialfaolefinas)                               | Sobre los                   | -30 a 150 C                |
|                     | Dollum R<br>Chevron SR12                                                             | Compuesto de Urea<br>Compuesto de Urea  | Aceite mineral<br>Aceite mineral                     | 230 C<br>239 C              | 0 a 150 C<br>0 a 150 C     |
| • Polea tensora (co | <ul> <li>Polea tensora (condiciones normales de trabajo)</li> <li>KNG 170</li> </ul> | trabajo)<br>Compuesto de Urea           | Pao (Polialfaolefinas)                               | Sobre los                   | -30 a 150 C                |
|                     | Multemp SRL                                                                          | Jabón de litio                          | Acelle IIIIIelal<br>Ester                            | 191 C                       | -40 a 130 C                |
|                     |                                                                                      |                                         |                                                      |                             |                            |





| • Alta Temperatura y Alta Velocidad.<br>KNG 241                       | Compto. de Urea                      | Ether-aceite<br>Base sintético      | Sobre los<br>250C | -40 a 170 C                |
|-----------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------|----------------------------|
| • Acoplador de Embrague<br>G40M                                       | Jabón de litio                       | Silicón                             | Sobre los         | -30 a 180 C                |
| FS3451 N 2                                                            | Resina de Fluorina                   | Fluorosilicona                      | Sobre los<br>250C | -40 a 220 C                |
| • Supercargadores.<br>(Condiciones Normales de Trabajo).<br>KNG 170   | Compto. de Urea                      | Aceite mineral                      | 250C              | -30 a 150 C                |
| <ul> <li>Resistencia a la Gasolina.</li> <li>Demnam LR65</li> </ul>   | Resina de Fluorina                   | Aceite fluorado<br>Aceite sintético | Sobre los<br>250C | -40 a 230 C                |
| • Eje de Mando.<br>Dorlum R                                           | Compto. de Urea                      | Aceite mineral                      | 236C              | 0 a 150 C                  |
| • Eje Impulsor.<br>Alvanla 2<br>Multemp SRL                           | Jabón de litio<br>Jabón de litio     | Aceite mineral<br>Éster             | 182 C<br>191 C    | -10a 100 C<br>-40 a 130 C  |
| • Ruedas. Alvanla2 Auto Lex B                                         | Jabón de litio<br>Jabón de litio     | Aceite mineral<br>Aceite mineral    | 182C<br>194C      | -10 a 100 C<br>-10 a 100 C |
| <ul> <li>Unidad de Cubo<br/>(Hub Unit).</li> <li>Leamax AF</li> </ul> | Compto. de Urea                      | Aceite mineral                      | Sobre los         | 0 a 150 C                  |
| SHELL 6459<br>Ronax MP                                                | Compto. de Urea<br>Complejo de litio | Aceite mineral<br>Aceite mineral    | 241 C<br>250 C    | 0 a 150 C<br>0 a 130 C     |





| • Junta Universal                                 |                                                      |                |                   |                            |
|---------------------------------------------------|------------------------------------------------------|----------------|-------------------|----------------------------|
| Alvania EP2                                       | Jabón de litio                                       | Aceite mineral | 187 C             | -10 a 80 C                 |
| Diamond MPM2                                      | Jabón de litio                                       | Aceite mineral | 195 C             | -10 a 80 C                 |
| • Junta Universal - Tipo KC                       | labón de litio                                       | Aceite mineral | 7<br>7            | -10 a 100 C.               |
|                                                   |                                                      |                | )                 | )<br>)<br>)<br>-<br>5<br>) |
| • Dirección<br>Alvanla 3                          | Jabón de litio                                       | Aceite mineral | 186 C             | -10 a 100 C                |
| • Pivote de DIrecclón.<br>Alvanla EP2             | Jabón de litio                                       | Aceite mineral | 187 C             | -10 a 80 C                 |
| 7 - FERROCARRILES:                                |                                                      |                |                   |                            |
|                                                   |                                                      |                |                   |                            |
| Grasa                                             | Espesante                                            | Aceite Base    | Punto de<br>goteo | Rango de<br>Temperatura    |
| • Muñón (aplicaciones generales).<br>Arapen RB300 | Jabón de litio<br>Jabón de calcio                    | Aceite mineral | 175 C             | -30 a 90 C                 |
| • Minon-Inidades para eies de Ferroc              | rocarril (ABII)                                      |                |                   |                            |
| Arapen RB300                                      | ,                                                    | Aceite mineral | 175 C             | -30 a 90 C                 |
| Arap⊔n RB320                                      | Jabón de calcio<br>Jabón de litio<br>Jabón de calcio | Aceite mineral | 174 C             | -30 a 90 C                 |
| Motor de Tracción                                 |                                                      |                |                   |                            |
| Sunlight EMS2<br>Limax 2TR                        | Jabón de litio<br>Jabón de litio                     | Aceite mineral | 197 C<br>186 C    | -10 a 100 C<br>-10 a 100 C |
| Multinoc 2                                        | Jabón de litio                                       | Aceite mineral | 210 C             | -10a 100 C                 |
|                                                   |                                                      |                |                   |                            |





| 8 - RODAMIENTOS MINIATURA Y I<br>Grasa                                   | PEQUEÑOS.<br>Espesante | Aceite Base               | Punto de Goteo    | Rango de<br>Temperatura. |
|--------------------------------------------------------------------------|------------------------|---------------------------|-------------------|--------------------------|
| Multemp<br>SRL                                                           | Jabón de litio         | Éster                     | 191 C             | -40 a 130 C              |
| Isoflex<br>NBU15                                                         | Complejo de<br>Bario   | Diéster<br>Aceite mineral | Sobre los<br>250C | -40 a 100 C              |
| 9 - VENTILADORES:<br>Dlamond<br>WBHD2                                    | Jabón de litio         | Aceite mineral            | 195 C             | 0 a 100 C                |
| 10 - CORONAS GIRATORIAS:                                                 |                        |                           |                   |                          |
| <ul> <li>Condiciones Normales de Trabajo<br/>Alvanla EP2</li> </ul>      | Jabón de litio         | Aceite mineral            | 187 C             | -10 a 80 C               |
| <ul> <li>Condiciones de baja temperatura</li> <li>Multemp PS2</li> </ul> | Jabón de litio         | Diéster<br>Aceite mineral | 198 C             | -40 a 100 C              |
| 11 - AGRÍCOLAS:<br>Alvanla 3                                             | Jabón de litio         | Aceite mineral            | 186 C             | -10 a 100 C              |
| 12 - CARRETES DE PESCA:<br>Alvanla 1                                     | Jabón de litio         | Aceite mineral            | 180 C             | -20 a 80 C               |
|                                                                          |                        |                           |                   |                          |





| 13 - HIERRO Y ACERO:                                                        |                                                  |                                                    |                         |                                     |
|-----------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------|
| Grasa                                                                       | Espesante                                        | Aceite Base                                        | Punto de Goteo          | Rango de<br>Temperatura.            |
| <ul> <li>Trenes laminadores.</li> <li>Adlex</li> <li>Sunlight LS</li> </ul> | Jabón de litio<br>Jabón de litio                 | Aceite mineral<br>Aceite mineral                   | 198 C<br>182 C          | -10 a 100 C<br>-10 a 100 C          |
| • Transportadores.<br>Darina2<br>OS Grease 1<br>Alumlx HD1                  | Microgel<br>Bentonita<br>Complejo de<br>Aluminio | Aceite mineral<br>Aceite mineral<br>Aceite mineral | 280 C<br>333 C<br>248 C | 0 a 150 e<br>0 a 150 C<br>0 a 120 C |
| • Laminadores de Colada Continua.<br>Pyronok2                               | Compuesto<br>de Urea                             | Aceite mineral                                     | Sobre los<br>250 C      | 0 a 180 C                           |
|                                                                             |                                                  |                                                    |                         |                                     |





| Frecuencias de Reengrase para rodamientos.<br>Factores de Reducción para condiciones desfavorables de trabajo.     |                        |          |                                     |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------|----------|-------------------------------------|--|
| Acción de polvo y humedad en la superficie de trabajo del rodamiento.<br>Reducida.<br>Fuerte.<br>Muy Fuerte.       | $\Sigma \Sigma \Sigma$ | 11 11 11 | 0.7 a 0.9<br>0.4 a 0.7<br>0.1 a 0.4 |  |
| Influencia por solicitación a carga por golpes, vibraciones y oscilaciones.<br>Reducida.<br>Fuerte.<br>Muy Fuerte. | 222                    | 11 11 11 | 0.7 a 0.9<br>0.4 a 0.7<br>0.1 a 0.4 |  |
| Influencia por elevadas temperaturas.<br>Reducida.<br>Fuerte.<br>Muy Fuerte.                                       | ದ ದ ದ                  | 11 11 11 | 0.7 a 0.9<br>0.4 a 0.7<br>0.1 a 0.4 |  |
| <b>Influencia por elevada solicitación a carga.</b><br>Reducida.<br>Fuerte.<br>Muy Fuerte.                         | <b>444</b>             | 11 11 11 | 0.7 a 0.9<br>0.4 a 0.7<br>0.1 a 0.4 |  |
| Influencia por corriente de aire a través del rodamiento.<br>Reducida.<br>Fuerte.<br>Muy Fuerte.                   | ស ស ស                  | 11 11 11 | 0.7 a 0.9<br>0.4 a 0.7<br>0.1 a 0.4 |  |
| <b>Influencia por condiciones de montaje.</b><br>Ejes en posición vertical.                                        | 9                      | II       | 0.7 a 0.9                           |  |